BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26073997)

  • 21. Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 participate in the process of catabolite inactivation of maltose permease.
    Mayordomo I; Regelmann J; Horak J; Sanz P
    FEBS Lett; 2003 Jun; 544(1-3):160-4. PubMed ID: 12782308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Derepression of a baker's yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression.
    Salema-Oom M; De Sousa HR; Assunção M; Gonçalves P; Spencer-Martins I
    J Appl Microbiol; 2011 Jan; 110(1):364-74. PubMed ID: 21091593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.
    Dong J; Chen D; Wang G; Zhang C; Du L; Liu S; Zhao Y; Xiao D
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):817-28. PubMed ID: 26965428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae.
    Tu J; Carlson M
    EMBO J; 1995 Dec; 14(23):5939-46. PubMed ID: 8846786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast.
    Lin X; Zhang CY; Bai XW; Feng B; Xiao DG
    Int J Food Microbiol; 2015 Mar; 197():15-21. PubMed ID: 25555226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sugar utilization patterns and respiro-fermentative metabolism in the baker's yeast Torulaspora delbrueckii.
    Alves-Araújo C; Pacheco A; Almeida MJ; Spencer-Martins I; Leão C; Sousa MJ
    Microbiology (Reading); 2007 Mar; 153(Pt 3):898-904. PubMed ID: 17322210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leavening ability of baker's yeast exposed to hyperosmotic media.
    Hirasawa R; Yokoigawa K
    FEMS Microbiol Lett; 2001 Jan; 194(2):159-62. PubMed ID: 11164301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae.
    Huang D; Chun KT; Goebl MG; Roach PJ
    Genetics; 1996 May; 143(1):119-27. PubMed ID: 8722767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The multiple effects of REG1 deletion and SNF1 overexpression improved the production of S-adenosyl-L-methionine in Saccharomyces cerevisiae.
    Chen H; Chai X; Wang Y; Liu J; Zhou G; Wei P; Song Y; Ma L
    Microb Cell Fact; 2022 Aug; 21(1):174. PubMed ID: 36030199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast.
    Castermans D; Somers I; Kriel J; Louwet W; Wera S; Versele M; Janssens V; Thevelein JM
    Cell Res; 2012 Jun; 22(6):1058-77. PubMed ID: 22290422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms.
    Shashkova S; Wollman AJM; Leake MC; Hohmann S
    FEMS Microbiol Lett; 2017 Aug; 364(14):. PubMed ID: 28854669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase.
    Sanz P; Alms GR; Haystead TA; Carlson M
    Mol Cell Biol; 2000 Feb; 20(4):1321-8. PubMed ID: 10648618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glc8 is a glucose-repressible activator of Glc7 protein phosphatase-1.
    Nigavekar SS; Tan YS; Cannon JF
    Arch Biochem Biophys; 2002 Aug; 404(1):71-9. PubMed ID: 12127071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of overexpression of SNF1 on the transcriptional and metabolic landscape of baker's yeast under freezing stress.
    Meng L; Yang X; Lin X; Jiang HY; Hu XP; Liu SX
    Microb Cell Fact; 2021 Jan; 20(1):10. PubMed ID: 33413411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    Microb Cell Fact; 2012 Apr; 11():40. PubMed ID: 22462683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ptc1 protein phosphatase 2C contributes to glucose regulation of SNF1/AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae.
    Ruiz A; Xu X; Carlson M
    J Biol Chem; 2013 Oct; 288(43):31052-8. PubMed ID: 24019512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quality parameters and RAPD-PCR differentiation of commercial baker's yeast and hybrid strains.
    El-Fiky ZA; Hassan GM; Emam AM
    J Food Sci; 2012 Jun; 77(6):M312-7. PubMed ID: 22583100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae.
    Hübscher V; Mudholkar K; Chiabudini M; Fitzke E; Wölfle T; Pfeifer D; Drepper F; Warscheid B; Rospert S
    Nucleic Acids Res; 2016 Jul; 44(12):5629-45. PubMed ID: 27001512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Function of protein phosphatase-1, Glc7, in Saccharomyces cerevisiae.
    Cannon JF
    Adv Appl Microbiol; 2010; 73():27-59. PubMed ID: 20800758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast.
    Ohdate T; Omura F; Hatanaka H; Zhou Y; Takagi M; Goshima T; Akao T; Ono E
    PLoS One; 2018; 13(6):e0198744. PubMed ID: 29894505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.