BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 26074009)

  • 1. Melittin-induced cholesterol reorganization in lipid bilayer membranes.
    Qian S; Heller WT
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2253-60. PubMed ID: 26074009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alamethicin disrupts the cholesterol distribution in dimyristoyl phosphatidylcholine-cholesterol lipid bilayers.
    Qian S; Rai D; Heller WT
    J Phys Chem B; 2014 Sep; 118(38):11200-8. PubMed ID: 25210841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes.
    Rai DK; Qian S; Heller WT
    Biochim Biophys Acta; 2016 Nov; 1858(11):2788-2794. PubMed ID: 27526681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-induced asymmetric distribution of charged lipids in a vesicle bilayer revealed by small-angle neutron scattering.
    Qian S; Heller WT
    J Phys Chem B; 2011 Aug; 115(32):9831-7. PubMed ID: 21751797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer.
    Sharma VK; Mamontov E; Anunciado DB; O'Neill H; Urban VS
    Soft Matter; 2015 Sep; 11(34):6755-67. PubMed ID: 26212615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The membrane-induced structure of melittin is correlated with the fluidity of the lipids.
    Andersson A; Biverståhl H; Nordin J; Danielsson J; Lindahl E; Mäler L
    Biochim Biophys Acta; 2007 Jan; 1768(1):115-21. PubMed ID: 16949029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stopped-flow fluorometric study of the interaction of melittin with phospholipid bilayers: importance of the physical state of the bilayer and the acyl chain length.
    Bradrick TD; Philippetis A; Georghiou S
    Biophys J; 1995 Nov; 69(5):1999-2010. PubMed ID: 8580343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1.
    Lyu Y; Fitriyanti M; Narsimhan G
    Colloids Surf B Biointerfaces; 2019 Jan; 173():121-127. PubMed ID: 30278360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane.
    Bernèche S; Nina M; Roux B
    Biophys J; 1998 Oct; 75(4):1603-18. PubMed ID: 9746504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible disc-micellization of dimyristoylphosphatidylcholine bilayers induced by melittin and [Ala-14]melittin.
    Dempsey CE; Sternberg B
    Biochim Biophys Acta; 1991 Jan; 1061(2):175-84. PubMed ID: 1998691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect formation of lytic peptides in lipid membranes and their influence on the thermodynamic properties of the pore environment.
    Oliynyk V; Kaatze U; Heimburg T
    Biochim Biophys Acta; 2007 Feb; 1768(2):236-45. PubMed ID: 17141732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cholesterol on the polymorphism of dipalmitoylphosphatidylcholine/melittin complexes: an NMR study.
    Monette M; Van Calsteren MR; Lafleur M
    Biochim Biophys Acta; 1993 Jul; 1149(2):319-28. PubMed ID: 8323950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy.
    Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM
    J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence.
    Raghuraman H; Chattopadhyay A
    Biophys J; 2007 Feb; 92(4):1271-83. PubMed ID: 17114219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy.
    Naito A; Nagao T; Norisada K; Mizuno T; Tuzi S; Saitô H
    Biophys J; 2000 May; 78(5):2405-17. PubMed ID: 10777736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering.
    Su CJ; Wu SS; Jeng US; Lee MT; Su AC; Liao KF; Lin WY; Huang YS; Chen CY
    Biochim Biophys Acta; 2013 Feb; 1828(2):528-34. PubMed ID: 23123565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.
    Therrien A; Fournier A; Lafleur M
    J Phys Chem B; 2016 May; 120(17):3993-4002. PubMed ID: 27054924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological behavior of lipid bilayers induced by melittin near the phase transition temperature.
    Toraya S; Nagao T; Norisada K; Tuzi S; Saitô H; Izumi S; Naito A
    Biophys J; 2005 Nov; 89(5):3214-22. PubMed ID: 16113109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.