BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26074133)

  • 1. Self-association of Trimethylguanosine Synthase Tgs1 is required for efficient snRNA/snoRNA trimethylation and pre-rRNA processing.
    Boon KL; Pearson MD; Koš M
    Sci Rep; 2015 Jun; 5():11282. PubMed ID: 26074133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of Swm2p selectively impairs trimethylation of snRNAs by trimethylguanosine synthase (Tgs1p).
    Boon KL; Kos M
    FEBS Lett; 2010 Aug; 584(15):3299-304. PubMed ID: 20621096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analyses of trimethylguanosine synthase (Tgs1) and Mud2: proteins implicated in pre-mRNA splicing.
    Chang J; Schwer B; Shuman S
    RNA; 2010 May; 16(5):1018-31. PubMed ID: 20360394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus.
    Mouaikel J; Verheggen C; Bertrand E; Tazi J; Bordonné R
    Mol Cell; 2002 Apr; 9(4):891-901. PubMed ID: 11983179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypermethylation of yeast telomerase RNA by the snRNA and snoRNA methyltransferase Tgs1.
    Franke J; Gehlen J; Ehrenhofer-Murray AE
    J Cell Sci; 2008 Nov; 121(Pt 21):3553-60. PubMed ID: 18840651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways.
    Hausmann S; Zheng S; Costanzo M; Brost RL; Garcin D; Boone C; Shuman S; Schwer B
    J Biol Chem; 2008 Nov; 283(46):31706-18. PubMed ID: 18775984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-structure-function relationships of Tgs1, the yeast snRNA/snoRNA cap hypermethylase.
    Mouaikel J; Bujnicki JM; Tazi J; Bordonné R
    Nucleic Acids Res; 2003 Aug; 31(16):4899-909. PubMed ID: 12907733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Routes to Genetic Suppression of RNA Trimethylguanosine Cap Deficiency via C-Terminal Truncation of U1 snRNP Subunit Snp1 or Overexpression of RNA Polymerase Subunit Rpo26.
    Qiu ZR; Schwer B; Shuman S
    G3 (Bethesda); 2015 Apr; 5(7):1361-70. PubMed ID: 25911228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The small nucle(ol)ar RNA cap trimethyltransferase is required for ribosome synthesis and intact nucleolar morphology.
    Colau G; Thiry M; Leduc V; Bordonné R; Lafontaine DL
    Mol Cell Biol; 2004 Sep; 24(18):7976-86. PubMed ID: 15340060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An essential role for trimethylguanosine RNA caps in Saccharomyces cerevisiae meiosis and their requirement for splicing of SAE3 and PCH2 meiotic pre-mRNAs.
    Qiu ZR; Shuman S; Schwer B
    Nucleic Acids Res; 2011 Jul; 39(13):5633-46. PubMed ID: 21398639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Box H/ACA snoRNAs are preferred substrates for the trimethylguanosine synthase in the divergent unicellular eukaryote Trichomonas vaginalis.
    Simoes-Barbosa A; Chakrabarti K; Pearson M; Benarroch D; Shuman S; Johnson PJ
    RNA; 2012 Sep; 18(9):1656-65. PubMed ID: 22847815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of the RNA trimethylguanosine cap is compatible with nuclear accumulation of spliceosomal snRNAs but not pre-mRNA splicing or snRNA processing during animal development.
    Cheng L; Zhang Y; Zhang Y; Chen T; Xu YZ; Rong YS
    PLoS Genet; 2020 Oct; 16(10):e1009098. PubMed ID: 33085660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity and mechanism of RNA cap guanine-N2 methyltransferase (Tgs1).
    Hausmann S; Shuman S
    J Biol Chem; 2005 Feb; 280(6):4021-4. PubMed ID: 15590684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals.
    Ghazal G; Ge D; Gervais-Bird J; Gagnon J; Abou Elela S
    Mol Cell Biol; 2005 Apr; 25(8):2981-94. PubMed ID: 15798187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1.
    Monecke T; Dickmanns A; Ficner R
    Nucleic Acids Res; 2009 Jul; 37(12):3865-77. PubMed ID: 19386620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Trypanosoma brucei cap hypermethylase Tgs1.
    Ruan JP; Ullu E; Tschudi C
    Mol Biochem Parasitol; 2007 Sep; 155(1):66-9. PubMed ID: 17610965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA.
    Vincenti S; De Chiara V; Bozzoni I; Presutti C
    RNA; 2007 Jan; 13(1):138-50. PubMed ID: 17135484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giardia lamblia RNA cap guanine-N2 methyltransferase (Tgs2).
    Hausmann S; Shuman S
    J Biol Chem; 2005 Sep; 280(37):32101-6. PubMed ID: 16046409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure analysis of the conserved methyltransferase domain of human trimethylguanosine synthase TGS1.
    Monecke T; Dickmanns A; Strasser A; Ficner R
    Acta Crystallogr D Biol Crystallogr; 2009 Apr; 65(Pt 4):332-8. PubMed ID: 19307714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae Sof1p associates with 35S Pre-rRNA independent from U3 snoRNA and Rrp5p.
    Bax R; Vos HR; Raué HA; Vos JC
    Eukaryot Cell; 2006 Mar; 5(3):427-34. PubMed ID: 16524898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.