These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26074238)

  • 61. Symposium review: Characterization of the bovine milk protein profile using proteomic techniques.
    Greenwood SL; Honan MC
    J Dairy Sci; 2019 Mar; 102(3):2796-2806. PubMed ID: 30612793
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interactions between tea catechins and casein micelles and their impact on renneting functionality.
    Haratifar S; Corredig M
    Food Chem; 2014 Jan; 143():27-32. PubMed ID: 24054208
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk.
    Udabage P; McKinnon IR; Augustin MA
    J Dairy Sci; 2001 Jul; 84(7):1569-75. PubMed ID: 11467804
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Heat-induced covalent complex between casein micelles and beta-lactoglobulin from goat's milk: identification of an involved disulfide bond.
    Henry G; Mollé D; Morgan F; Fauquant J; Bouhallab S
    J Agric Food Chem; 2002 Jan; 50(1):185-91. PubMed ID: 11754565
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Seasonal variations in composition, properties, and heat-induced changes in bovine milk in a seasonal calving system.
    Li S; Ye A; Singh H
    J Dairy Sci; 2019 Sep; 102(9):7747-7759. PubMed ID: 31326173
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A comprehensive study of the relationship between size and protein composition in natural bovine casein micelles.
    Donnelly WJ; McNeill GP; Buchheim W; McGann TC
    Biochim Biophys Acta; 1984 Sep; 789(2):136-43. PubMed ID: 6477926
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The impact of the concentration of casein micelles and whey protein-stabilized fat globules on the rennet-induced gelation of milk.
    Gaygadzhiev Z; Corredig M; Alexander M
    Colloids Surf B Biointerfaces; 2009 Feb; 68(2):154-62. PubMed ID: 19022631
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of solvent and temperature on the size distribution of casein micelles measured by dynamic light scattering.
    Beliciu CM; Moraru CI
    J Dairy Sci; 2009 May; 92(5):1829-39. PubMed ID: 19389940
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Thermal instability and characteristics of donkey casein micelles.
    Luo J; Jian S; Wang P; Ren F; Wang F; Chen S; Guo H
    Food Res Int; 2019 May; 119():436-443. PubMed ID: 30884674
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mineral and casein equilibria in milk: effects of added salts and calcium-chelating agents.
    Udabage P; McKinnon IR; Augustin MA
    J Dairy Res; 2000 Aug; 67(3):361-70. PubMed ID: 11037232
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Size distribution of casein micelles during milk coagulation.
    Omar MM
    Nahrung; 1985; 29(2):119-24. PubMed ID: 3990781
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Study of the Interactions Occurring During the Encapsulation of Sesamol within Casein Micelles Reformed from Sodium Caseinate Solutions.
    Santos Basurto MA; Cardador Martínez A; Castaño Tostado E; Bah M; Reynoso Camacho R; Amaya Llano SL
    J Food Sci; 2018 Sep; 83(9):2295-2304. PubMed ID: 30085358
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interactions of casein micelles with calcium phosphate particles.
    Tercinier L; Ye A; Anema SG; Singh A; Singh H
    J Agric Food Chem; 2014 Jun; 62(25):5983-92. PubMed ID: 24896851
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.
    Jørgensen CE; Abrahamsen RK; Rukke EO; Johansen AG; Schüller RB; Skeie SB
    J Dairy Sci; 2016 Aug; 99(8):6164-6179. PubMed ID: 27265169
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Developments in column chromatography for the separation and characterization of casein micelles.
    McGann TC; Kearney RD; Donnelly WJ
    J Dairy Res; 1979 Apr; 46(2):307-11. PubMed ID: 469058
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Role of the soluble and micelle-bound heat-induced protein aggregates on network formation in acid skim milk gels.
    Guyomarc'h F; Queguiner C; Law AJ; Horne DS; Dalgleish DG
    J Agric Food Chem; 2003 Dec; 51(26):7743-50. PubMed ID: 14664539
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microscopical Evaluation of the Effects of High-Pressure Processing on Milk Casein Micelles.
    Serna-Hernandez SO; Escobedo-Avellaneda Z; García-García R; Rostro-Alanis MJ; Welti-Chanes J
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364012
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Short communication: Effects of nanofiltration and evaporation on the physiochemical properties of milk protein during processing of milk protein concentrate.
    Cao J; Zhang W; Wu S; Liu C; Li Y; Li H; Zhang L
    J Dairy Sci; 2015 Jan; 98(1):100-5. PubMed ID: 25465557
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Separation and determination of denatured alpha(s1)-, alpha(s2)-, beta- and kappa-caseins by hydrophobic interaction chromatography in cows', ewes' and goats' milk, milk mixtures and cheeses.
    Bramanti E; Sortino C; Onor M; Beni F; Raspi G
    J Chromatogr A; 2003 Apr; 994(1-2):59-74. PubMed ID: 12779219
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Casein retention in curd and loss of casein into whey at chymosin-induced coagulation of milk.
    Hallén E; Lundén A; Allmere T; Andrén A
    J Dairy Res; 2010 Feb; 77(1):71-6. PubMed ID: 19939322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.