BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26074302)

  • 21. Super-Resolving the Actual Position of Single Fluorescent Molecules Coupled to a Plasmonic Nanoantenna.
    Fu B; Isaacoff BP; Biteen JS
    ACS Nano; 2017 Sep; 11(9):8978-8987. PubMed ID: 28806873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oriented Gold Nanorods and Gold Nanorod Chains within Smectic Liquid Crystal Topological Defects.
    Rožič B; Fresnais J; Molinaro C; Calixte J; Umadevi S; Lau-Truong S; Felidj N; Kraus T; Charra F; Dupuis V; Hegmann T; Fiorini-Debuisschert C; Gallas B; Lacaze E
    ACS Nano; 2017 Jul; 11(7):6728-6738. PubMed ID: 28640628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Super-resolution nonlinear photothermal microscopy.
    Nedosekin DA; Galanzha EI; Dervishi E; Biris AS; Zharov VP
    Small; 2014 Jan; 10(1):135-42. PubMed ID: 23864531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective fluorescent-free detection of biomolecules on nanobiochips by wavelength dependent-enhanced dark field illumination.
    Lee S; Yu H; Kang SH
    Chem Commun (Camb); 2013 Sep; 49(75):8335-7. PubMed ID: 23925125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous two color image capture for sub-diffraction localization fluorescence microscopy.
    Glasgow BJ; Ma L
    Micron; 2016 Jan; 80():14-9. PubMed ID: 26409111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved sensitivity of wavelength-modulated surface plasmon resonance biosensor using gold nanorods.
    Hao P; Wu Y; Li F
    Appl Opt; 2011 Oct; 50(28):5555-8. PubMed ID: 22016225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells.
    Gu Z; Jing C; Ying YL; He P; Long YT
    Theranostics; 2015; 5(2):188-95. PubMed ID: 25553107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles.
    Huang Y; Kim DH
    Nanoscale; 2011 Aug; 3(8):3228-32. PubMed ID: 21698325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging.
    Ponsetto JL; Wei F; Liu Z
    Nanoscale; 2014 Jun; 6(11):5807-12. PubMed ID: 24740802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional super-localization and tracking of single gold nanoparticles in cells.
    Gu Y; Di X; Sun W; Wang G; Fang N
    Anal Chem; 2012 May; 84(9):4111-7. PubMed ID: 22458652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide.
    Awazu K; Fujimaki M; Rockstuhl C; Tominaga J; Murakami H; Ohki Y; Yoshida N; Watanabe T
    J Am Chem Soc; 2008 Feb; 130(5):1676-80. PubMed ID: 18189392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Narrow band imaging of squamous cell carcinoma tumors using topically delivered anti-EGFR antibody conjugated gold nanorods.
    Puvanakrishnan P; Diagaradjane P; Kazmi SM; Dunn AK; Krishnan S; Tunnell JW
    Lasers Surg Med; 2012 Apr; 44(4):310-7. PubMed ID: 22415634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution light-scattering imaging with two-dimensional hexagonal illumination patterns: system implementation and image reconstruction formulations.
    Chen CW; Wang PH; Chou LJ; Lee YY; Chang BJ; Chiang SY
    Opt Express; 2017 Sep; 25(18):21652-21672. PubMed ID: 29041461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tempo-spatially resolved scattering correlation spectroscopy under dark-field illumination and its application to investigate dynamic behaviors of gold nanoparticles in live cells.
    Liu H; Dong C; Ren J
    J Am Chem Soc; 2014 Feb; 136(7):2775-85. PubMed ID: 24460214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging.
    Zhan Q; Qian J; Li X; He S
    Nanotechnology; 2010 Feb; 21(5):055704. PubMed ID: 20023304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of plasmonic enhancement of fluorescence on plastic substrates.
    Nooney RI; Stranik O; McDonagh C; MacCraith BD
    Langmuir; 2008 Oct; 24(19):11261-7. PubMed ID: 18771301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An ultra-sensitive dual-mode imaging system using metal-enhanced fluorescence in solid phantoms.
    Barnoy EA; Fixler D; Popovtzer R; Nayhoz T; Ray K
    Nano Res; 2015 Dec; 8(12):3912-3921. PubMed ID: 26870306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Super-Resolution Imaging at Mid-Infrared Waveband in Graphene-nanocavity formed on meta-surface.
    Yang J; Wang T; Chen Z; Hu B; Yu W
    Sci Rep; 2016 Nov; 6():37898. PubMed ID: 27897207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy.
    Lin H; Centeno SP; Su L; Kenens B; Rocha S; Sliwa M; Hofkens J; Uji-i H
    Chemphyschem; 2012 Mar; 13(4):973-81. PubMed ID: 22183928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of Spectral and Spatial Conditions to Improve Super-Resolution Imaging of Plasmonic Nanoparticles.
    De Silva Indrasekara AS; Shuang B; Hollenhorst F; Hoener BS; Hoggard A; Chen S; Villarreal E; Cai YY; Kisley L; Derry PJ; Chang WS; Zubarev ER; Ringe E; Link S; Landes CF
    J Phys Chem Lett; 2017 Jan; 8(1):299-306. PubMed ID: 27982600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.