BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26074305)

  • 1. The effect of the resistive properties of bone on neural excitation and electric fields in cochlear implant models.
    Malherbe TK; Hanekom T; Hanekom JJ
    Hear Res; 2015 Sep; 327():126-35. PubMed ID: 26074305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing a three-dimensional electrical model of a living cochlear implant user's cochlea.
    Malherbe TK; Hanekom T; Hanekom JJ
    Int J Numer Method Biomed Eng; 2016 Jul; 32(7):. PubMed ID: 26430919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postoperative Electrocochleography from Hybrid Cochlear Implant users: An Alternative Analysis Procedure.
    Kim JS; Tejani VD; Abbas PJ; Brown CJ
    Hear Res; 2018 Dec; 370():304-315. PubMed ID: 30393003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pure-Tone Masking Patterns for Monopolar and Phantom Electrical Stimulation in Cochlear Implants.
    Saoji AA; Koka K; Litvak LM; Finley CC
    Ear Hear; 2018; 39(1):124-130. PubMed ID: 28700446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements.
    Vanpoucke FJ; Zarowski AJ; Peeters SA
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2174-83. PubMed ID: 15605865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of stimulus attenuation in cochlear implants.
    Smit JE; Hanekom T; Hanekom JJ
    J Neurosci Methods; 2009 Jun; 180(2):363-73. PubMed ID: 19464523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling surface potentials from intracochlear electrical stimulation.
    Mens LH; Huiskamp G; Oostendorp T; van den Broek P
    Scand Audiol; 1999; 28(4):249-55. PubMed ID: 10572970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear-Implant Users: Relationship to Psychometric Functions for Detection.
    Zhou N; Dong L
    Trends Hear; 2017 Jan; 21():2331216517690108. PubMed ID: 28150534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The facial nerve canal: an important cochlear conduction path revealed by Clarion electrical field imaging.
    Vanpoucke F; Zarowski A; Casselman J; Frijns J; Peeters S
    Otol Neurotol; 2004 May; 25(3):282-9. PubMed ID: 15129106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant patients.
    Berenstein CK; Vanpoucke FJ; Mulder JJ; Mens LH
    Hear Res; 2010 Dec; 270(1-2):28-38. PubMed ID: 20946945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Summating Potential Is a Reliable Marker of Electrode Position in Electrocochleography: Cochlear Implant as a Theragnostic Probe.
    Helmstaedter V; Lenarz T; Erfurt P; Kral A; Baumhoff P
    Ear Hear; 2018; 39(4):687-700. PubMed ID: 29251689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical resistivity measurements in the mammalian cochlea after neural degeneration.
    Micco AG; Richter CP
    Laryngoscope; 2006 Aug; 116(8):1334-41. PubMed ID: 16885732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cochlear Implant Stimulation of a Hearing Ear Generates Separate Electrophonic and Electroneural Responses.
    Sato M; Baumhoff P; Kral A
    J Neurosci; 2016 Jan; 36(1):54-64. PubMed ID: 26740649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current focussing in cochlear implants: an analysis of neural recruitment in a computational model.
    Kalkman RK; Briaire JJ; Frijns JH
    Hear Res; 2015 Apr; 322():89-98. PubMed ID: 25528491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Preliminary Investigation of the Air-Bone Gap: Changes in Intracochlear Sound Pressure With Air- and Bone-conducted Stimuli After Cochlear Implantation.
    Banakis Hartl RM; Mattingly JK; Greene NT; Jenkins HA; Cass SP; Tollin DJ
    Otol Neurotol; 2016 Oct; 37(9):1291-9. PubMed ID: 27579835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of electrical stimulation on the acoustically evoked auditory-nerve response in guinea pigs with a high-frequency hearing loss.
    Stronks HC; Versnel H; Prijs VF; Grolman W; Klis SF
    Hear Res; 2011 Feb; 272(1-2):95-107. PubMed ID: 21044671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of multichannel cochlear implants for animal research.
    Rebscher SJ; Hetherington AM; Snyder RL; Leake PA; Bonham BH
    J Neurosci Methods; 2007 Oct; 166(1):1-12. PubMed ID: 17727956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of the facial nerve by intracochlear electrodes in otosclerosis: a computer modeling study.
    Frijns JH; Kalkman RK; Briaire JJ
    Otol Neurotol; 2009 Dec; 30(8):1168-74. PubMed ID: 19574948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the spread of electric field on neural excitation in cochlear implant users: Transimpedance and spread of excitation measurements.
    Kopsch AC; Rahne T; Plontke SK; Wagner L
    Hear Res; 2022 Oct; 424():108591. PubMed ID: 35914395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cochlear implantation for chronic electrical stimulation in the mouse.
    Irving S; Trotter MI; Fallon JB; Millard RE; Shepherd RK; Wise AK
    Hear Res; 2013 Dec; 306():37-45. PubMed ID: 24055621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.