These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26074335)

  • 1. The facile fabrication of magnetite nanoparticles and their enhanced catalytic performance in Fischer-Tropsch synthesis.
    Zheng S; Sun J; Song D; Chen Z; Chen J
    Chem Commun (Camb); 2015 Jul; 51(55):11123-5. PubMed ID: 26074335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis.
    Wang H; Zhou W; Liu JX; Si R; Sun G; Zhong MQ; Su HY; Zhao HB; Rodriguez JA; Pennycook SJ; Idrobo JC; Li WX; Kou Y; Ma D
    J Am Chem Soc; 2013 Mar; 135(10):4149-58. PubMed ID: 23428163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis.
    Yang C; Zhao H; Hou Y; Ma D
    J Am Chem Soc; 2012 Sep; 134(38):15814-21. PubMed ID: 22938192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon carbide coated with TiO2 with enhanced cobalt active phase dispersion for Fischer-Tropsch synthesis.
    Liu Y; Florea I; Ersen O; Pham-Huu C; Meny C
    Chem Commun (Camb); 2015 Jan; 51(1):145-8. PubMed ID: 25387082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ crystallization route to nanorod-aggregated functional ZSM-5 microspheres.
    Li B; Sun B; Qian X; Li W; Wu Z; Sun Z; Qiao M; Duke M; Zhao D
    J Am Chem Soc; 2013 Jan; 135(4):1181-4. PubMed ID: 23286838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile fabrication of porous Fe@C nanohybrids from natural magnetite as excellent Fischer-Tropsch catalysts.
    Zhang Q; Gu J; Chen J; Qiu S; Wang T
    Chem Commun (Camb); 2020 Apr; 56(33):4523-4526. PubMed ID: 32292972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C).
    de Smit E; Cinquini F; Beale AM; Safonova OV; van Beek W; Sautet P; Weckhuysen BM
    J Am Chem Soc; 2010 Oct; 132(42):14928-41. PubMed ID: 20925335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt carbide nanoprisms for direct production of lower olefins from syngas.
    Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H
    Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron oxide and alumina nanocomposites applied to Fischer-Tropsch synthesis.
    Dong H; Xie M; Xu J; Li M; Peng L; Guo X; Ding W
    Chem Commun (Camb); 2011 Apr; 47(13):4019-21. PubMed ID: 21347472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of Ag@Pd satellites-Fe3O4 core nanocomposites as efficient and reusable hydrogenation catalysts.
    Jiang K; Zhang HX; Yang YY; Mothes R; Lang H; Cai WB
    Chem Commun (Camb); 2011 Nov; 47(43):11924-6. PubMed ID: 21975908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilizing Optimal Crystalline Facet of Cobalt Catalysts for Fischer-Tropsch Synthesis.
    Qin C; Hou B; Wang J; Wang G; Ma Z; Jia L; Li D
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33886-33893. PubMed ID: 31498584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity.
    Zhang Q; Cheng K; Kang J; Deng W; Wang Y
    ChemSusChem; 2014 May; 7(5):1251-64. PubMed ID: 24339240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication of BCN Nanosheet-Encapsulated Nano-Iron as Highly Stable Fischer-Tropsch Synthesis Catalyst.
    Wu J; Wang L; Lv B; Chen J
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14319-14327. PubMed ID: 28395134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and catalysis of location-specific cobalt nanoparticles supported by multiwall carbon nanotubes for Fischer-Tropsch synthesis.
    Zhu Y; Ye Y; Zhang S; Leong ME; Tao FF
    Langmuir; 2012 May; 28(21):8275-80. PubMed ID: 22583353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactors for Catalytic Methanation in the Conversion of Biomass to Synthetic Natural Gas (SNG).
    Schildhauer TJ; Biollaz SM
    Chimia (Aarau); 2015; 69(10):603-7. PubMed ID: 26598404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions.
    Alex D; Mathew A; Sukumaran RK
    Bioresour Technol; 2014 Sep; 167():547-50. PubMed ID: 24968816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A recyclable ruthenium(II) complex supported on magnetic nanoparticles: a regioselective catalyst for alkyne-azide cycloaddition.
    Wang D; Salmon L; Ruiz J; Astruc D
    Chem Commun (Camb); 2013 Aug; 49(62):6956-8. PubMed ID: 23807317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1H-tetrazoles under solvent-free conditions.
    Naeimi H; Mohamadabadi S
    Dalton Trans; 2014 Sep; 43(34):12967-73. PubMed ID: 25030453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous-phase Fischer-Tropsch synthesis with a ruthenium nanocluster catalyst.
    Xiao CX; Cai ZP; Wang T; Kou Y; Yan N
    Angew Chem Int Ed Engl; 2008; 47(4):746-9. PubMed ID: 18067111
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade.
    Xu X; Li Y; Gong Y; Zhang P; Li H; Wang Y
    J Am Chem Soc; 2012 Oct; 134(41):16987-90. PubMed ID: 23030399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.