BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 26074489)

  • 1. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the mechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles.
    Larrañaga A; Diamanti E; Rubio E; Palomares T; Alonso-Varona A; Aldazabal P; Martin FJ; Sarasua JR
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():451-60. PubMed ID: 25063141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots.
    Zheng P; Yao Q; Mao F; Liu N; Xu Y; Wei B; Wang L
    Mol Med Rep; 2017 Oct; 16(4):5078-5084. PubMed ID: 28849142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adipose- and bone marrow-derived mesenchymal stem cells display different osteogenic differentiation patterns in 3D bioactive glass-based scaffolds.
    Rath SN; Nooeaid P; Arkudas A; Beier JP; Strobel LA; Brandl A; Roether JA; Horch RE; Boccaccini AR; Kneser U
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E497-E509. PubMed ID: 24357645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic potential of human dental pulp stem cells cultured onto poly-ε-caprolactone/poly (rotaxane) scaffolds.
    Oliveira NK; Salles THC; Pedroni AC; Miguita L; D'Ávila MA; Marques MM; Deboni MCZ
    Dent Mater; 2019 Dec; 35(12):1740-1749. PubMed ID: 31543375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration.
    Lu Z; Wang G; Roohani-Esfahani I; Dunstan CR; Zreiqat H
    Tissue Eng Part A; 2014 Mar; 20(5-6):992-1002. PubMed ID: 24195838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds.
    Arabiyat AS; Pfau MR; Grunlan MA; Hahn MS
    J Biomed Mater Res A; 2021 Nov; 109(11):2334-2345. PubMed ID: 33988292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells.
    Huri PY; Ozilgen BA; Hutton DL; Grayson WL
    Biomed Mater; 2014 Aug; 9(4):045003. PubMed ID: 24945873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive glass ceramic nanoparticles-coated poly(l-lactic acid) scaffold improved osteogenic differentiation of adipose stem cells in equine.
    Mahdavi FS; Salehi A; Seyedjafari E; Mohammadi-Sangcheshmeh A; Ardeshirylajimi A
    Tissue Cell; 2017 Oct; 49(5):565-572. PubMed ID: 28851519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.
    Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/beta-TCP scaffolds.
    Haimi S; Suuriniemi N; Haaparanta AM; Ellä V; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Kellomäki M; Miettinen S; Suuronen R
    Tissue Eng Part A; 2009 Jul; 15(7):1473-80. PubMed ID: 19072198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro human adipose-derived stromal/stem cells osteogenesis in akermanite:poly-ε-caprolactone scaffolds.
    Zanetti AS; McCandless GT; Chan JY; Gimble JM; Hayes DJ
    J Biomater Appl; 2014 Mar; 28(7):998-1007. PubMed ID: 23796629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds.
    Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR
    J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the growth and osteogenic differentiation of ASCs cultured with PL and seeded on PLGA scaffolds.
    Awidi A; Ababneh N; Alkilani H; Salah B; Nazzal S; Zoghool M; Shomaf M
    J Mater Sci Mater Med; 2015 Feb; 26(2):84. PubMed ID: 25644098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.