BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 26074495)

  • 61. Analysis of expressed sequence tags from the wheat leaf blotch pathogen Mycosphaerella graminicola (anamorph Septoria tritici).
    Keon J; Antoniw J; Rudd J; Skinner W; Hargreaves J; Hammond-Kosack K
    Fungal Genet Biol; 2005 May; 42(5):376-89. PubMed ID: 15809003
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The
    Alassimone J; Praz C; Lorrain C; De Francesco A; Carrasco-López C; Faino L; Shen Z; Meile L; Sánchez-Vallet A
    Mol Plant Microbe Interact; 2024 May; 37(5):432-444. PubMed ID: 38265007
    [No Abstract]   [Full Text] [Related]  

  • 63. Characterization of an antimicrobial and phytotoxic ribonuclease secreted by the fungal wheat pathogen Zymoseptoria tritici.
    Kettles GJ; Bayon C; Sparks CA; Canning G; Kanyuka K; Rudd JJ
    New Phytol; 2018 Jan; 217(1):320-331. PubMed ID: 28895153
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparative Transcriptomics Reveals How Wheat Responds to Infection by Zymoseptoria tritici.
    Ma X; Keller B; McDonald BA; Palma-Guerrero J; Wicker T
    Mol Plant Microbe Interact; 2018 Apr; 31(4):420-431. PubMed ID: 29090630
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Assessment of the cytochrome B substitution G143A in the Algerian population of Mycosphaerella graminicola.
    Allioui N; Siah A; Brinis L; Reignault P; Halama P
    Commun Agric Appl Biol Sci; 2013; 78(3):613-6. PubMed ID: 25151839
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comprehensive proteomic analysis of the wheat pathogenic fungus Zymoseptoria tritici.
    Yang F; Yin Q
    Proteomics; 2016 Jan; 16(1):98-101. PubMed ID: 26435044
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat.
    Dreisigacker S; Wang X; Martinez Cisneros BA; Jing R; Singh PK
    Theor Appl Genet; 2015 Nov; 128(11):2317-29. PubMed ID: 26298303
    [TBL] [Abstract][Full Text] [Related]  

  • 68. ASCORBIC ACID CONTROLS MYCOSPHAERELLA GRAMINICOLA IN BREAD AND DURUM WHEAT THROUGH DIRECT EFFECT ON THE PATHOGEN AND INDIRECT ACTION VIA PLANT DEFENCE.
    Somai-Jemmali L; Magnin-Robert M; Randoux B; Siah A; Tisserant B; Halama P; Reignault P; Hamada W
    Commun Agric Appl Biol Sci; 2015; 80(3):477-90. PubMed ID: 27141744
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The impact of Septoria tritici Blotch disease on wheat: An EU perspective.
    Fones H; Gurr S
    Fungal Genet Biol; 2015 Jun; 79():3-7. PubMed ID: 26092782
    [TBL] [Abstract][Full Text] [Related]  

  • 70. RELATIONSHIP BETWEEN PATHOGENICITY AND FUNGICIDE TOLERANCE IN THE WHEAT PATHOGEN MYCOSPHAERELLA GRAMINICOLA.
    Siah A; Deweer C; Tisserant B; Randoux B; Halama P; Reignault P
    Commun Agric Appl Biol Sci; 2015; 80(3):589-93. PubMed ID: 27141758
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Functional analysis of a Wheat Homeodomain protein, TaR1, reveals that host chromatin remodelling influences the dynamics of the switch to necrotrophic growth in the phytopathogenic fungus Zymoseptoria tritici.
    Lee J; Orosa B; Millyard L; Edwards M; Kanyuka K; Gatehouse A; Rudd J; Hammond-Kosack K; Pain N; Sadanandom A
    New Phytol; 2015 Apr; 206(2):598-605. PubMed ID: 25639381
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dissecting the Molecular Interactions between Wheat and the Fungal Pathogen Zymoseptoria tritici.
    Kettles GJ; Kanyuka K
    Front Plant Sci; 2016; 7():508. PubMed ID: 27148331
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tunisian population of Mycosphaerella graminicola is still sensitive to strobilurin fungicides.
    Naouari M; Siah A; Elgazzah M; Reignault P; Halama P
    Commun Agric Appl Biol Sci; 2013; 78(3):559-61. PubMed ID: 25151831
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Overview of genomic and bioinformatic resources for Zymoseptoria tritici.
    Testa A; Oliver R; Hane J
    Fungal Genet Biol; 2015 Jun; 79():13-6. PubMed ID: 26092784
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gene encoding a c-type cyclin in Mycosphaerella graminicola is involved in aerial mycelium formation, filamentous growth, hyphal swelling, melanin biosynthesis, stress response, and pathogenicity.
    Choi YE; Goodwin SB
    Mol Plant Microbe Interact; 2011 Apr; 24(4):469-77. PubMed ID: 21171890
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics.
    Yang F; Melo-Braga MN; Larsen MR; Jørgensen HJ; Palmisano G
    Mol Cell Proteomics; 2013 Sep; 12(9):2497-508. PubMed ID: 23722186
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola.
    Morais do Amaral A; Antoniw J; Rudd JJ; Hammond-Kosack KE
    PLoS One; 2012; 7(12):e49904. PubMed ID: 23236356
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Novel Primer Sets for Rapid Detection of
    Kuzdraliński A; Leśniowska-Nowak J; Nowak M; Kawęcka M; Kot A; Różaniecka K; Ostrowska A; Muszyńska M; Waśko A; Szczerba H
    Plant Dis; 2021 Feb; 105(2):251-254. PubMed ID: 33297718
    [No Abstract]   [Full Text] [Related]  

  • 79. Asynchronous development of Zymoseptoria tritici infection in wheat.
    Fantozzi E; Kilaru S; Gurr SJ; Steinberg G
    Fungal Genet Biol; 2021 Jan; 146():103504. PubMed ID: 33326850
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of the ABC transporter genes MgAtr1 and MgAtr2 from the wheat pathogen Mycosphaerella graminicola.
    Zwiers LH; De Waard MA
    Fungal Genet Biol; 2000 Jul; 30(2):115-25. PubMed ID: 11017767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.