These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Photonic coherence effects from dual-waveguide coupled pair of co-resonant microring resonators: erratum. Naweed A Opt Express; 2015 Aug; 23(17):22954. PubMed ID: 26368263 [TBL] [Abstract][Full Text] [Related]
4. Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide. Zhang B; Sun Y; Xu Y; Hu G; Zeng P; Gao M; Xia D; Huang Y; Li Z Opt Lett; 2021 Jun; 46(12):2828-2831. PubMed ID: 34129551 [TBL] [Abstract][Full Text] [Related]
5. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators. Zhuang H; Kong F; Li K; Sheng S Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785 [TBL] [Abstract][Full Text] [Related]
7. Electromagnetically induced transparency-like effect in microring-Bragg gratings based coupling resonant system. Zhang Z; Ng GI; Hu T; Qiu H; Guo X; Rouifed MS; Liu C; Wang H Opt Express; 2016 Oct; 24(22):25665-25675. PubMed ID: 27828502 [TBL] [Abstract][Full Text] [Related]
8. Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator. Huang Q; Shu Z; Song G; Chen J; Xia J; Yu J Opt Express; 2014 Feb; 22(3):3219-27. PubMed ID: 24663613 [TBL] [Abstract][Full Text] [Related]
9. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Han Z; Bozhevolnyi SI Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147 [TBL] [Abstract][Full Text] [Related]
10. Electromagnetically induced absorption in a three-resonator metasurface system. Zhang X; Xu N; Qu K; Tian Z; Singh R; Han J; Agarwal GS; Zhang W Sci Rep; 2015 May; 5():10737. PubMed ID: 26023061 [TBL] [Abstract][Full Text] [Related]
11. Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators. Liu HC; Yariv A Opt Express; 2012 Apr; 20(8):9249-63. PubMed ID: 22513637 [TBL] [Abstract][Full Text] [Related]
12. Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system. He LY; Wang TJ; Gao YP; Cao C; Wang C Opt Express; 2015 Sep; 23(18):23817-26. PubMed ID: 26368475 [TBL] [Abstract][Full Text] [Related]
13. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces. Long Y; Wang J Sci Rep; 2014 Jun; 4():5409. PubMed ID: 24958225 [TBL] [Abstract][Full Text] [Related]
14. Induced transparency in nanoscale plasmonic resonator systems. Lu H; Liu X; Mao D; Gong Y; Wang G Opt Lett; 2011 Aug; 36(16):3233-5. PubMed ID: 21847218 [TBL] [Abstract][Full Text] [Related]
15. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators. Wang T; Zhang Y; Hong Z; Han Z Opt Express; 2014 Sep; 22(18):21529-34. PubMed ID: 25321531 [TBL] [Abstract][Full Text] [Related]
16. Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling. Zhang C; Bai R; Gu X; Jin XR; Zhang YQ; Lee Y Opt Express; 2017 Oct; 25(20):24281-24289. PubMed ID: 29041373 [TBL] [Abstract][Full Text] [Related]
17. Electromagnetically induced-transparency-like spectrum in an add/drop interferometer. Wang K; Yu C; Zhang X; Xu C; Zhang Y; Yuan P Appl Opt; 2015 Feb; 54(6):1285-9. PubMed ID: 25968189 [TBL] [Abstract][Full Text] [Related]