These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 26074652)

  • 1. Sensitivity of liquid clouds to homogenous freezing parameterizations.
    Herbert RJ; Murray BJ; Dobbie SJ; Koop T
    Geophys Res Lett; 2015 Mar; 42(5):1599-1605. PubMed ID: 26074652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols.
    DeMott PJ; Mason RH; McCluskey CS; Hill TCJ; Perkins RJ; Desyaterik Y; Bertram AK; Trueblood JV; Grassian VH; Qiu Y; Molinero V; Tobo Y; Sultana CM; Lee C; Prather KA
    Environ Sci Process Impacts; 2018 Nov; 20(11):1559-1569. PubMed ID: 30382263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface crystallization of supercooled water in clouds.
    Tabazadeh A; Djikaev YS; Reiss H
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15873-8. PubMed ID: 12456877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds.
    Atkinson JD; Murray BJ; Woodhouse MT; Whale TF; Baustian KJ; Carslaw KS; Dobbie S; O'Sullivan D; Malkin TL
    Nature; 2013 Jun; 498(7454):355-8. PubMed ID: 23760484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles.
    Vergara-Temprado J; Miltenberger AK; Furtado K; Grosvenor DP; Shipway BJ; Hill AA; Wilkinson JM; Field PR; Murray BJ; Carslaw KS
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2687-2692. PubMed ID: 29490918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore condensation and freezing is responsible for ice formation below water saturation for porous particles.
    David RO; Marcolli C; Fahrni J; Qiu Y; Perez Sirkin YA; Molinero V; Mahrt F; Brühwiler D; Lohmann U; Kanji ZA
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8184-8189. PubMed ID: 30948638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of surface charges for homogeneous freezing of supercooled water microdroplets.
    Rzesanke D; Nadolny J; Duft D; Müller R; Kiselev A; Leisner T
    Phys Chem Chem Phys; 2012 Jul; 14(26):9359-63. PubMed ID: 22294097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.
    Knopf DA; Alpert PA
    Faraday Discuss; 2013; 165():513-34. PubMed ID: 24601020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
    Ickes L; Welti A; Hoose C; Lohmann U
    Phys Chem Chem Phys; 2015 Feb; 17(8):5514-37. PubMed ID: 25627933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate of Homogenous Nucleation of Ice in Supercooled Water.
    Atkinson JD; Murray BJ; O'Sullivan D
    J Phys Chem A; 2016 Aug; 120(33):6513-20. PubMed ID: 27410458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.
    Whale TF; Holden MA; Wilson TW; O'Sullivan D; Murray BJ
    Chem Sci; 2018 May; 9(17):4142-4151. PubMed ID: 29780544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The implications of dust ice nuclei effect on cloud top temperature in a complex mesoscale convective system.
    Li R; Dong X; Guo J; Fu Y; Zhao C; Wang Y; Min Q
    Sci Rep; 2017 Oct; 7(1):13826. PubMed ID: 29061971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of cubic ice under conditions relevant to Earth's atmosphere.
    Murray BJ; Knopf DA; Bertram AK
    Nature; 2005 Mar; 434(7030):202-5. PubMed ID: 15758996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freezing water in no-man's land.
    Manka A; Pathak H; Tanimura S; Wölk J; Strey R; Wyslouzil BE
    Phys Chem Chem Phys; 2012 Apr; 14(13):4505-16. PubMed ID: 22354018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological Ice-Nucleating Particles Deposited Year-Round in Subtropical Precipitation.
    Joyce RE; Lavender H; Farrar J; Werth JT; Weber CF; D'Andrilli J; Vaitilingom M; Christner BC
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31562166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.