BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 26074778)

  • 1. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe.
    McAlinden N; Gu E; Dawson MD; Sakata S; Mathieson K
    Front Neural Circuits; 2015; 9():25. PubMed ID: 26074778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe.
    Scharf R; Tsunematsu T; McAlinden N; Dawson MD; Sakata S; Mathieson K
    Sci Rep; 2016 Jun; 6():28381. PubMed ID: 27334849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.
    Hayashi Y; Tagawa Y; Yawata S; Nakanishi S; Funabiki K
    Eur J Neurosci; 2012 Sep; 36(6):2722-32. PubMed ID: 22780218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals.
    Wu F; Stark E; Ku PC; Wise KD; Buzsáki G; Yoon E
    Neuron; 2015 Dec; 88(6):1136-1148. PubMed ID: 26627311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebellar Nuclei Neurons Show Only Small Excitatory Responses to Optogenetic Olivary Stimulation in Transgenic Mice: In Vivo and In Vitro Studies.
    Lu H; Yang B; Jaeger D
    Front Neural Circuits; 2016; 10():21. PubMed ID: 27047344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Density, Double-Sided, Flexible Optoelectronic Neural Probes With Embedded μLEDs.
    Reddy JW; Kimukin I; Stewart LT; Ahmed Z; Barth AL; Towe E; Chamanzar M
    Front Neurosci; 2019; 13():745. PubMed ID: 31456654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact Optical Neural Probes With Up to 20 Integrated Thin-Film μLEDs Applied in Acute Optogenetic Studies.
    Ayub S; David F; Klein E; Borel M; Paul O; Gentet LJ; Ruther P
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2603-2615. PubMed ID: 31940517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous electrophysiology and optogenetic perturbation of the same neurons in chronically implanted animals using μLED silicon probes.
    Kinsky NR; Vöröslakos M; Lopez Ruiz JR; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K
    STAR Protoc; 2023 Dec; 4(4):102570. PubMed ID: 37729059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal constraints on optogenetic inactivation in cortical circuits.
    Li N; Chen S; Guo ZV; Chen H; Huo Y; Inagaki HK; Chen G; Davis C; Hansel D; Guo C; Svoboda K
    Elife; 2019 Nov; 8():. PubMed ID: 31736463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.
    Fenno LE; Gunaydin LA; Deisseroth K
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):537-48. PubMed ID: 26034299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrays of microLEDs and astrocytes: biological amplifiers to optogenetically modulate neuronal networks reducing light requirement.
    Berlinguer-Palmini R; Narducci R; Merhan K; Dilaghi A; Moroni F; Masi A; Scartabelli T; Landucci E; Sili M; Schettini A; McGovern B; Maskaant P; Degenaar P; Mannaioni G
    PLoS One; 2014; 9(9):e108689. PubMed ID: 25265500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HectoSTAR μLED Optoelectrodes for Large-Scale, High-Precision In Vivo Opto-Electrophysiology.
    Vöröslakos M; Kim K; Slager N; Ko E; Oh S; Parizi SS; Hendrix B; Seymour JP; Wise KD; Buzsáki G; Fernández-Ruiz A; Yoon E
    Adv Sci (Weinh); 2022 Jun; 9(18):e2105414. PubMed ID: 35451232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo calcium recordings and channelrhodopsin-2 activation through an optical fiber.
    Adelsberger H; Grienberger C; Stroh A; Konnerth A
    Cold Spring Harb Protoc; 2014 Oct; 2014(10):pdb.prot084145. PubMed ID: 25275110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetically transduced human ES cell-derived neural progenitors and their neuronal progenies: Phenotypic characterization and responses to optical stimulation.
    Ryu J; Vincent PFY; Ziogas NK; Xu L; Sadeghpour S; Curtin J; Alexandris AS; Stewart N; Sima R; du Lac S; Glowatzki E; Koliatsos VE
    PLoS One; 2019; 14(11):e0224846. PubMed ID: 31710637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Electrophysiology and Optogenetic Perturbation of the Same Neurons in Chronically Implanted Animals using μLED Silicon Probes.
    Kinsky NR; Vöröslakos M; Ruiz JRL; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.
    Aravanis AM; Wang LP; Zhang F; Meltzer LA; Mogri MZ; Schneider MB; Deisseroth K
    J Neural Eng; 2007 Sep; 4(3):S143-56. PubMed ID: 17873414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin-2.
    Campagnola L; Wang H; Zylka MJ
    J Neurosci Methods; 2008 Mar; 169(1):27-33. PubMed ID: 18187202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic stimulation of the auditory nerve.
    Hernandez VH; Gehrt A; Jing Z; Hoch G; Jeschke M; Strenzke N; Moser T
    J Vis Exp; 2014 Oct; (92):e52069. PubMed ID: 25350571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.