These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26075506)

  • 1. Multi-Pixel Photon Counters for Optofluidic Characterization of Particles and Microalgae.
    Asrar P; Sucur M; Hashemi N
    Biosensors (Basel); 2015 Jun; 5(2):308-18. PubMed ID: 26075506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic reversibility of hydrodynamic focusing for recycling sheath fluid.
    Hashemi N; Howell PB; Erickson JS; Golden JP; Ligler FS
    Lab Chip; 2010 Aug; 10(15):1952-9. PubMed ID: 20480064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis of microalgae residues--A kinetic study.
    Bui HH; Tran KQ; Chen WH
    Bioresour Technol; 2016 Jan; 199():362-366. PubMed ID: 26342785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
    Holmes D; Morgan H; Green NG
    Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-wavelength microflow cytometer using groove-generated sheath flow.
    Golden JP; Kim JS; Erickson JS; Hilliard LR; Howell PB; Anderson GP; Nasir M; Ligler FS
    Lab Chip; 2009 Jul; 9(13):1942-50. PubMed ID: 19532970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogels.
    Ferro Y; Perullini M; Jobbagy M; Bilmes SA; Durrieu C
    Sensors (Basel); 2012 Dec; 12(12):16879-91. PubMed ID: 23223083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence.
    Wang J; Sun J; Song Y; Xu Y; Pan X; Sun Y; Li D
    Sensors (Basel); 2013 Nov; 13(12):16075-89. PubMed ID: 24287532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimode interference devices for focusing in microfluidic channels.
    Hunt HC; Wilkinson JS
    Opt Lett; 2011 Aug; 36(16):3067-9. PubMed ID: 21847162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-discernment microflow cytometer with microweir structure.
    Fu LM; Tsai CH; Lin CH
    Electrophoresis; 2008 May; 29(9):1874-80. PubMed ID: 18384041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure.
    Hou HH; Tsai CH; Fu LM; Yang RJ
    Electrophoresis; 2009 Jul; 30(14):2507-15. PubMed ID: 19639570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sol-gel silica platforms for microalgae-based optical biosensors.
    Perullini M; Ferro Y; Durrieu C; Jobbágy M; Bilmes SA
    J Biotechnol; 2014 Jun; 179():65-70. PubMed ID: 24637376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer.
    Goddard G; Martin JC; Graves SW; Kaduchak G
    Cytometry A; 2006 Feb; 69(2):66-74. PubMed ID: 16419065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cytodisk: a cytometer based upon a new principle of cell alignment.
    de Grooth BG; Geerken TH; Greve J
    Cytometry; 1985 May; 6(3):226-33. PubMed ID: 3996137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics.
    Kim HS; Waqued SC; Nodurft DT; Devarenne TP; Yakovlev VV; Han A
    Analyst; 2017 Apr; 142(7):1054-1060. PubMed ID: 28294227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens.
    Song C; Luong TD; Kong TF; Nguyen NT; Asundi AK
    Opt Lett; 2011 Mar; 36(5):657-9. PubMed ID: 21368939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW; Yoo JY
    Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.