These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26075573)

  • 1. Tuning Interfacial Electron Transfer in Nanostructured Cuprous Oxide Photoelectrochemical Cells with Charge-Selective Molecular Coatings.
    Haynes KM; Kratch KC; Stovall SD; Obondi CO; Thurber CR; Youngblood WJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16133-7. PubMed ID: 26075573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Templated electrodeposition and photocatalytic activity of cuprous oxide nanorod arrays.
    Haynes KM; Perry CM; Rivas M; Golden TD; Bazan A; Quintana M; Nesterov VN; Berhe SA; Rodríguez J; Estrada W; Youngblood WJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):830-7. PubMed ID: 25455203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells.
    Hao F; Jiao X; Li J; Lin H
    Nanoscale; 2013 Jan; 5(2):726-33. PubMed ID: 23223876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells.
    Concina I; Vomiero A
    Small; 2015 Apr; 11(15):1744-74. PubMed ID: 25523717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel p-n heterojunction copper phosphide/cuprous oxide photocathode for solar hydrogen production.
    Chen YC; Chen ZB; Hsu YK
    J Colloid Interface Sci; 2018 Aug; 523():201-207. PubMed ID: 29625322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of photocurrent in dye sensitized solar cells incorporating a cyclometalated ruthenium complex with cuprous iodide as an electrolyte additive.
    Kisserwan H; Ghaddar TH
    Dalton Trans; 2011 Apr; 40(15):3877-84. PubMed ID: 21308133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells.
    Boix PP; Lee YH; Fabregat-Santiago F; Im SH; Mora-Sero I; Bisquert J; Seok SI
    ACS Nano; 2012 Jan; 6(1):873-80. PubMed ID: 22175224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells.
    Clifford JN; Martínez-Ferrero E; Viterisi A; Palomares E
    Chem Soc Rev; 2011 Mar; 40(3):1635-46. PubMed ID: 21076736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids.
    Kecsenovity E; Endrődi B; Tóth PS; Zou Y; Dryfe RAW; Rajeshwar K; Janáky C
    J Am Chem Soc; 2017 May; 139(19):6682-6692. PubMed ID: 28460518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of dye structure on charge recombination in dye-sensitized solar cells.
    Jennings JR; Liu Y; Wang Q; Zakeeruddin SM; Grätzel M
    Phys Chem Chem Phys; 2011 Apr; 13(14):6637-48. PubMed ID: 21380426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties.
    Palmstrom AF; Santra PK; Bent SF
    Nanoscale; 2015 Aug; 7(29):12266-83. PubMed ID: 26147328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dye-controlled interfacial electron transfer for high-current indium tin oxide photocathodes.
    Huang Z; He M; Yu M; Click K; Beauchamp D; Wu Y
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6857-61. PubMed ID: 25907357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the role of the dye/oxide interface via SnO2-based MK-2 dye-sensitized solar cells.
    Son DY; Lee CR; Shin HW; Jang IH; Jung HS; Ahn TK; Park NG
    Phys Chem Chem Phys; 2015 Jun; 17(23):15193-200. PubMed ID: 25990302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration.
    Sun Z; Liang M; Chen J
    Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room Temperature Electrodeposition of Ready-to-Use TiO
    Cao Y; Qiao H; Zou Y; An N; Zhou Y; Liu D; Kuang Y
    Front Chem; 2022; 10():832342. PubMed ID: 35273948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.