These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 26075799)

  • 1. Negative differential conductance in molecular junctions: an overview of experiment and theory.
    Xu B; Dubi Y
    J Phys Condens Matter; 2015 Jul; 27(26):263202. PubMed ID: 26075799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions.
    Xue HB; Liang JQ; Liu WM
    Sci Rep; 2015 Mar; 5():8730. PubMed ID: 25736094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of H
    Li ZL; Yi XH; Liu R; Bi JJ; Fu HY; Zhang GP; Song YZ; Wang CK
    Sci Rep; 2017 Jun; 7(1):4195. PubMed ID: 28646192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transport and redox reactions in carbon-based molecular electronic junctions.
    McCreery RL; Wu J; Kalakodimi RP
    Phys Chem Chem Phys; 2006 Jun; 8(22):2572-90. PubMed ID: 16738711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Area, Ensemble Molecular Electronics: Motivation and Challenges.
    Vilan A; Aswal D; Cahen D
    Chem Rev; 2017 Mar; 117(5):4248-4286. PubMed ID: 28177226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductance saturation in a series of highly transmitting molecular junctions.
    Yelin T; Korytár R; Sukenik N; Vardimon R; Kumar B; Nuckolls C; Evers F; Tal O
    Nat Mater; 2016 Apr; 15(4):444-9. PubMed ID: 26828315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear current-voltage characteristics and enhanced negative differential conductance in graphene field effect transistors.
    Wang L; Chen X; Hu Y; Yu A; Lu W
    Nanoscale; 2014 Nov; 6(21):12769-79. PubMed ID: 25224726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative effects in molecular conduction II: The semiconductor-metal molecular junction.
    Landau A; Nitzan A; Kronik L
    J Phys Chem A; 2009 Jul; 113(26):7451-60. PubMed ID: 19348487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large negative differential conductance and its transformation in a single radical molecule.
    Tang X; Wang W; Tang H; Wang M; Ye X; Hao D; Zhang J; Shan X; Lu X
    Chem Sci; 2024 Jul; 15(28):10989-10996. PubMed ID: 39027270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical view of unimolecular rectification.
    Stadler R; Geskin V; Cornil J
    J Phys Condens Matter; 2008 Sep; 20(37):374105. PubMed ID: 21694412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of single-molecule junction conductance on molecular conformation.
    Venkataraman L; Klare JE; Nuckolls C; Hybertsen MS; Steigerwald ML
    Nature; 2006 Aug; 442(7105):904-7. PubMed ID: 16929295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical coupling and negative differential resistance from interactions across the molecule-electrode interface in molecular junctions.
    Dubi Y
    J Chem Phys; 2013 Oct; 139(15):154710. PubMed ID: 24160536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing tunnelling details by normalized differential conductance analysis of transport across molecular junctions.
    Vilan A
    Phys Chem Chem Phys; 2017 Oct; 19(40):27166-27172. PubMed ID: 28967929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions.
    Zotti LA; Kirchner T; Cuevas JC; Pauly F; Huhn T; Scheer E; Erbe A
    Small; 2010 Jul; 6(14):1529-35. PubMed ID: 20578111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of reproducible, integration-compatible hybrid molecular/si electronics.
    Yu X; Lovrinčić R; Kraynis O; Man G; Ely T; Zohar A; Toledano T; Cahen D; Vilan A
    Small; 2014 Dec; 10(24):5151-60. PubMed ID: 25098545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlated Energy-Level Alignment Effects Determine Substituent-Tuned Single-Molecule Conductance.
    Ivie JA; Bamberger ND; Parida KN; Shepard S; Dyer D; Saraiva-Souza A; Himmelhuber R; McGrath DV; Smeu M; Monti OLA
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4267-4277. PubMed ID: 33438990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule electronics: from chemical design to functional devices.
    Sun L; Diaz-Fernandez YA; Gschneidtner TA; Westerlund F; Lara-Avila S; Moth-Poulsen K
    Chem Soc Rev; 2014 Nov; 43(21):7378-411. PubMed ID: 25099384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Break-junctions for investigating transport at the molecular scale.
    Schwarz F; Lörtscher E
    J Phys Condens Matter; 2014 Nov; 26(47):474201. PubMed ID: 25352355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of negative differential conductance in carbon nanotubes.
    Conwell EM
    Nano Lett; 2008 Apr; 8(4):1253-6. PubMed ID: 18355054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.