BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1059 related articles for article (PubMed ID: 26075842)

  • 1. Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
    Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D
    J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microphysiological model of the human placental barrier.
    Blundell C; Tess ER; Schanzer AS; Coutifaris C; Su EJ; Parry S; Huh D
    Lab Chip; 2016 Aug; 16(16):3065-73. PubMed ID: 27229450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an Organ-on-a-Chip-Device for Study of Placental Pathologies.
    Mosavati B; Oleinikov AV; Du E
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport.
    Huang X; Lüthi M; Ontsouka EC; Kallol S; Baumann MU; Surbek DV; Albrecht C
    Mol Hum Reprod; 2016 Jun; 22(6):442-56. PubMed ID: 26931579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of an in vitro placental barrier model cultured under physiologically relevant oxygen levels.
    Wong MK; Li EW; Adam M; Selvaganapathy PR; Raha S
    Mol Hum Reprod; 2020 May; 26(5):353-365. PubMed ID: 32159799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Human Placental Barrier Model Based on Trophoblast Stem Cells Derived from Human Induced Pluripotent Stem Cells.
    Li Z; Kurosawa O; Iwata H
    Tissue Eng Part A; 2020 Jul; 26(13-14):780-791. PubMed ID: 32323636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inspired by the human placenta: a novel 3D bioprinted membrane system to create barrier models.
    Kreuder AE; Bolaños-Rosales A; Palmer C; Thomas A; Geiger MA; Lam T; Amler AK; Markert UR; Lauster R; Kloke L
    Sci Rep; 2020 Sep; 10(1):15606. PubMed ID: 32973223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D microfluidics-assisted modeling of glucose transport in placental malaria.
    Mosavati B; Oleinikov A; Du E
    Sci Rep; 2022 Sep; 12(1):15278. PubMed ID: 36088464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro simulation of placental transport: part II. Glucose transfer across the placental barrier model.
    Levkovitz R; Zaretsky U; Jaffa AJ; Hod M; Elad D
    Placenta; 2013 Aug; 34(8):708-15. PubMed ID: 23764138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro simulation of placental transport: part I. Biological model of the placental barrier.
    Levkovitz R; Zaretsky U; Gordon Z; Jaffa AJ; Elad D
    Placenta; 2013 Aug; 34(8):699-707. PubMed ID: 23764139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Placental trophoblast-derived factors diminish endothelial barrier function.
    Wang Y; Lewis DF; Gu Y; Zhang Y; Alexander JS; Granger DN
    J Clin Endocrinol Metab; 2004 May; 89(5):2421-8. PubMed ID: 15126573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled human placental model from trophoblast stem cells in a dynamic organ-on-a-chip system.
    Cao R; Wang Y; Liu J; Rong L; Qin J
    Cell Prolif; 2023 May; 56(5):e13469. PubMed ID: 37199016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Placental Drug Transport-on-a-Chip: A Microengineered In Vitro Model of Transporter-Mediated Drug Efflux in the Human Placental Barrier.
    Blundell C; Yi YS; Ma L; Tess ER; Farrell MJ; Georgescu A; Aleksunes LM; Huh D
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 29121458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An advanced human in vitro co-culture model for translocation studies across the placental barrier.
    Aengenheister L; Keevend K; Muoth C; Schönenberger R; Diener L; Wick P; Buerki-Thurnherr T
    Sci Rep; 2018 Mar; 8(1):5388. PubMed ID: 29599470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier.
    Yin F; Zhu Y; Zhang M; Yu H; Chen W; Qin J
    Toxicol In Vitro; 2019 Feb; 54():105-113. PubMed ID: 30248392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fab fragment glycosylated IgG may play a central role in placental immune evasion.
    Gu J; Lei Y; Huang Y; Zhao Y; Li J; Huang T; Zhang J; Wang J; Deng X; Chen Z; Korteweg C; Deng R; Yan M; Xu Q; Dong S; Cai M; Luo L; Huang G; Wang Y; Li Q; Lin C; Su M; Yang C; Zhuang Z
    Hum Reprod; 2015 Feb; 30(2):380-91. PubMed ID: 25505012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A placenta-on-a-chip model to determine the regulation of FKBPL and galectin-3 in preeclampsia.
    Ghorbanpour SM; Richards C; Pienaar D; Sesperez K; Aboulkheyr Es H; Nikolic VN; Karadzov Orlic N; Mikovic Z; Stefanovic M; Cakic Z; Alqudah A; Cole L; Gorrie C; McGrath K; Kavurma MM; Ebrahimi Warkiani M; McClements L
    Cell Mol Life Sci; 2023 Jan; 80(2):44. PubMed ID: 36652019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture.
    Mondrinos MJ; Yi YS; Wu NK; Ding X; Huh D
    Lab Chip; 2017 Sep; 17(18):3146-3158. PubMed ID: 28809418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Placental Nanoparticle Uptake-On-a-Chip: The Impact of Trophoblast Syncytialization and Shear Stress.
    Abostait A; Tyrrell J; Abdelkarim M; Shojaei S; Tse WH; El-Sherbiny IM; Keijzer R; Labouta HI
    Mol Pharm; 2022 Nov; 19(11):3757-3769. PubMed ID: 36053057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.