These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1096 related articles for article (PubMed ID: 26075842)
1. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842 [TBL] [Abstract][Full Text] [Related]
2. A microphysiological model of the human placental barrier. Blundell C; Tess ER; Schanzer AS; Coutifaris C; Su EJ; Parry S; Huh D Lab Chip; 2016 Aug; 16(16):3065-73. PubMed ID: 27229450 [TBL] [Abstract][Full Text] [Related]
3. Development of an Organ-on-a-Chip-Device for Study of Placental Pathologies. Mosavati B; Oleinikov AV; Du E Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228194 [TBL] [Abstract][Full Text] [Related]
4. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport. Huang X; Lüthi M; Ontsouka EC; Kallol S; Baumann MU; Surbek DV; Albrecht C Mol Hum Reprod; 2016 Jun; 22(6):442-56. PubMed ID: 26931579 [TBL] [Abstract][Full Text] [Related]
5. Establishment of an in vitro placental barrier model cultured under physiologically relevant oxygen levels. Wong MK; Li EW; Adam M; Selvaganapathy PR; Raha S Mol Hum Reprod; 2020 May; 26(5):353-365. PubMed ID: 32159799 [TBL] [Abstract][Full Text] [Related]
6. A Novel Human Placental Barrier Model Based on Trophoblast Stem Cells Derived from Human Induced Pluripotent Stem Cells. Li Z; Kurosawa O; Iwata H Tissue Eng Part A; 2020 Jul; 26(13-14):780-791. PubMed ID: 32323636 [TBL] [Abstract][Full Text] [Related]
7. Inspired by the human placenta: a novel 3D bioprinted membrane system to create barrier models. Kreuder AE; Bolaños-Rosales A; Palmer C; Thomas A; Geiger MA; Lam T; Amler AK; Markert UR; Lauster R; Kloke L Sci Rep; 2020 Sep; 10(1):15606. PubMed ID: 32973223 [TBL] [Abstract][Full Text] [Related]
8. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Mosavati B; Oleinikov A; Du E Sci Rep; 2022 Sep; 12(1):15278. PubMed ID: 36088464 [TBL] [Abstract][Full Text] [Related]
9. Modelling the maternal-fetal interface: An in vitro approach to investigate nutrient and drug transport across the human placenta. Fuenzalida B; Basler V; Koechli N; Yi N; Staud F; Albrecht C J Cell Mol Med; 2024 Oct; 28(20):e70151. PubMed ID: 39422159 [TBL] [Abstract][Full Text] [Related]
10. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp; 2019 May; (147):. PubMed ID: 31067212 [TBL] [Abstract][Full Text] [Related]
11. In vitro simulation of placental transport: part II. Glucose transfer across the placental barrier model. Levkovitz R; Zaretsky U; Jaffa AJ; Hod M; Elad D Placenta; 2013 Aug; 34(8):708-15. PubMed ID: 23764138 [TBL] [Abstract][Full Text] [Related]
12. In vitro simulation of placental transport: part I. Biological model of the placental barrier. Levkovitz R; Zaretsky U; Gordon Z; Jaffa AJ; Elad D Placenta; 2013 Aug; 34(8):699-707. PubMed ID: 23764139 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled human placental model from trophoblast stem cells in a dynamic organ-on-a-chip system. Cao R; Wang Y; Liu J; Rong L; Qin J Cell Prolif; 2023 May; 56(5):e13469. PubMed ID: 37199016 [TBL] [Abstract][Full Text] [Related]
15. Placental Drug Transport-on-a-Chip: A Microengineered In Vitro Model of Transporter-Mediated Drug Efflux in the Human Placental Barrier. Blundell C; Yi YS; Ma L; Tess ER; Farrell MJ; Georgescu A; Aleksunes LM; Huh D Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 29121458 [TBL] [Abstract][Full Text] [Related]
16. An advanced human in vitro co-culture model for translocation studies across the placental barrier. Aengenheister L; Keevend K; Muoth C; Schönenberger R; Diener L; Wick P; Buerki-Thurnherr T Sci Rep; 2018 Mar; 8(1):5388. PubMed ID: 29599470 [TBL] [Abstract][Full Text] [Related]
17. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Yin F; Zhu Y; Zhang M; Yu H; Chen W; Qin J Toxicol In Vitro; 2019 Feb; 54():105-113. PubMed ID: 30248392 [TBL] [Abstract][Full Text] [Related]
18. Assessment of nanotoxicity in a human placenta-on-a-chip from trophoblast stem cells. Cao R; Guo Y; Liu J; Guo Y; Li X; Xie F; Wang Y; Qin J Ecotoxicol Environ Saf; 2024 Oct; 285():117051. PubMed ID: 39288735 [TBL] [Abstract][Full Text] [Related]
19. Fab fragment glycosylated IgG may play a central role in placental immune evasion. Gu J; Lei Y; Huang Y; Zhao Y; Li J; Huang T; Zhang J; Wang J; Deng X; Chen Z; Korteweg C; Deng R; Yan M; Xu Q; Dong S; Cai M; Luo L; Huang G; Wang Y; Li Q; Lin C; Su M; Yang C; Zhuang Z Hum Reprod; 2015 Feb; 30(2):380-91. PubMed ID: 25505012 [TBL] [Abstract][Full Text] [Related]
20. A placenta-on-a-chip model to determine the regulation of FKBPL and galectin-3 in preeclampsia. Ghorbanpour SM; Richards C; Pienaar D; Sesperez K; Aboulkheyr Es H; Nikolic VN; Karadzov Orlic N; Mikovic Z; Stefanovic M; Cakic Z; Alqudah A; Cole L; Gorrie C; McGrath K; Kavurma MM; Ebrahimi Warkiani M; McClements L Cell Mol Life Sci; 2023 Jan; 80(2):44. PubMed ID: 36652019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]