These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26076178)

  • 1. Predictive plus online visual information optimizes temporal precision in interception.
    de la Malla C; López-Moliner J
    J Exp Psychol Hum Percept Perform; 2015 Oct; 41(5):1271-80. PubMed ID: 26076178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catching what we can't see: manual interception of occluded fly-ball trajectories.
    Bosco G; Delle Monache S; Lacquaniti F
    PLoS One; 2012; 7(11):e49381. PubMed ID: 23166653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective versus predictive control in timing of hitting a falling ball.
    Katsumata H; Russell DM
    Exp Brain Res; 2012 Feb; 216(4):499-514. PubMed ID: 22120106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal precision of interceptive action: differential effects of target size and speed.
    Tresilian R; Oliver J; Carroll J
    Exp Brain Res; 2003 Feb; 148(4):425-38. PubMed ID: 12582826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size.
    Tresilian JR; Plooy A
    Exp Brain Res; 2006 Jun; 171(4):421-35. PubMed ID: 16307234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect interception actions by blind and visually impaired perceivers: echolocation for interceptive actions.
    Vernat JP; Gordon MS
    Scand J Psychol; 2010 Feb; 51(1):75-83. PubMed ID: 19392947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of interceptive actions is based on expectancy of time to target arrival.
    de Azevedo Neto RM; Teixeira LA
    Exp Brain Res; 2009 Nov; 199(2):135-43. PubMed ID: 19705111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal and spatial occlusion of advanced visual information constrains movement (re)organization in one-handed catching behaviors.
    Stone JA; Maynard IW; North JS; Panchuk D; Davids K
    Acta Psychol (Amst); 2017 Mar; 174():80-88. PubMed ID: 28196753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How people achieve their amazing temporal precision in interception.
    Brenner E; Smeets JB
    J Vis; 2015 Mar; 15(3):. PubMed ID: 25767094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions.
    Zago M; La Scaleia B; Miller WL; Lacquaniti F
    J Vis; 2011 Sep; 11(10):13. PubMed ID: 21933933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proprioception improves temporal accuracy in a coincidence-timing task.
    Rodríguez-Herreros B; López-Moliner J
    Exp Brain Res; 2011 Apr; 210(2):251-8. PubMed ID: 21431429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of task-constraints on the planning and control of interceptive hitting movements.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Neurosci Lett; 2006 Jan; 392(1-2):84-9. PubMed ID: 16229948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time compression increases with eccentricity: a magnocellular property.
    Aedo-Jury F; Pins D
    Neuroreport; 2010 Jan; 21(2):84-9. PubMed ID: 19884866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual fields reveal previously hidden dynamics of human visual motion sensitivity.
    Meso AI; Chemla S
    J Neurophysiol; 2015 Sep; 114(3):1360-3. PubMed ID: 25339713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catching objects thrown to oneself: Testing control strategies for object interception in a novel domain.
    Shaffer DM; Marken RS; Dolgov I; Maynor AB
    Perception; 2015; 44(4):400-9. PubMed ID: 26492725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced temporal fusion in near-hand space.
    Goodhew SC; Gozli DG; Ferber S; Pratt J
    Psychol Sci; 2013 Jun; 24(6):891-900. PubMed ID: 23599307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of recent empirical challenges to an account of interceptive timing.
    Tresilian JR
    Percept Psychophys; 1999 Apr; 61(3):515-28. PubMed ID: 10334098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initiation of evasive manoeuvres during self-motion: a test of three hypotheses.
    Tresilian JR; Wallis GM; Mattocks C
    Exp Brain Res; 2004 Nov; 159(2):251-7. PubMed ID: 15549280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of visual motion on interceptive actions and perception.
    Marinovic W; Plooy AM; Arnold DH
    Vision Res; 2012 May; 60():73-8. PubMed ID: 22480880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.