BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 26076233)

  • 1. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites.
    Anderson DW; McKeown AN; Thornton JW
    Elife; 2015 Jun; 4():e07864. PubMed ID: 26076233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epistasis facilitates functional evolution in an ancient transcription factor.
    Metzger BPH; Park Y; Starr TN; Thornton JW
    Elife; 2024 May; 12():. PubMed ID: 38767330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlated evolutionary pressure at interacting transcription factors and DNA response elements can guide the rational engineering of DNA binding specificity.
    Raviscioni M; Gu P; Sattar M; Cooney AJ; Lichtarge O
    J Mol Biol; 2005 Jul; 350(3):402-15. PubMed ID: 15946684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epistasis in protein evolution.
    Starr TN; Thornton JW
    Protein Sci; 2016 Jul; 25(7):1204-18. PubMed ID: 26833806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative evolutionary histories in the sequence space of an ancient protein.
    Starr TN; Picton LK; Thornton JW
    Nature; 2017 Sep; 549(7672):409-413. PubMed ID: 28902834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pervasive contingency and entrenchment in a billion years of Hsp90 evolution.
    Starr TN; Flynn JM; Mishra P; Bolon DNA; Thornton JW
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4453-4458. PubMed ID: 29626131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated evolution of transcription factors and their binding sites.
    Yang S; Yalamanchili HK; Li X; Yao KM; Sham PC; Zhang MQ; Wang J
    Bioinformatics; 2011 Nov; 27(21):2972-8. PubMed ID: 21896508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contingency and chance erase necessity in the experimental evolution of ancestral proteins.
    Xie VC; Pu J; Metzger BP; Thornton JW; Dickinson BC
    Elife; 2021 Jun; 10():. PubMed ID: 34061027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Position specific variation in the rate of evolution in transcription factor binding sites.
    Moses AM; Chiang DY; Kellis M; Lander ES; Eisen MB
    BMC Evol Biol; 2003 Aug; 3():19. PubMed ID: 12946282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex Patterns of Association between Pleiotropy and Transcription Factor Evolution.
    Chesmore KN; Bartlett J; Cheng C; Williams SM
    Genome Biol Evol; 2016 Oct; 8(10):3159-3170. PubMed ID: 27635052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical fitness landscapes for transcription factor binding sites.
    Haldane A; Manhart M; Morozov AV
    PLoS Comput Biol; 2014 Jul; 10(7):e1003683. PubMed ID: 25010228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding.
    Le DD; Shimko TC; Aditham AK; Keys AM; Longwell SA; Orenstein Y; Fordyce PM
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3702-E3711. PubMed ID: 29588420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEMPLE: analysing population genetic variation at transcription factor binding sites.
    Litovchenko M; Laurent S
    Mol Ecol Resour; 2016 Nov; 16(6):1428-1434. PubMed ID: 27106869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Human Transcription Factors.
    Lambert SA; Jolma A; Campitelli LF; Das PK; Yin Y; Albu M; Chen X; Taipale J; Hughes TR; Weirauch MT
    Cell; 2018 Feb; 172(4):650-665. PubMed ID: 29425488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intersecting transcription networks constrain gene regulatory evolution.
    Sorrells TR; Booth LN; Tuch BB; Johnson AD
    Nature; 2015 Jul; 523(7560):361-5. PubMed ID: 26153861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.
    Horvath MM; Wang X; Resnick MA; Bell DA
    PLoS Genet; 2007 Jul; 3(7):e127. PubMed ID: 17677004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epistasis shapes the fitness landscape of an allosteric specificity switch.
    Nishikawa KK; Hoppe N; Smith R; Bingman C; Raman S
    Nat Commun; 2021 Sep; 12(1):5562. PubMed ID: 34548494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.