These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26076247)

  • 1. Patterned graphene edges for tailored reflection of plasmonic modes.
    Rosolen G; Maes B
    Opt Lett; 2015 Jun; 40(12):2727-30. PubMed ID: 26076247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge-reflection phase directed plasmonic resonances on graphene nano-structures.
    Du L; Tang D; Yuan X
    Opt Express; 2014 Sep; 22(19):22689-98. PubMed ID: 25321738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of edge on graphene plasmons as revealed by infrared nanoimaging.
    Xu Q; Ma T; Danesh M; Shivananju BN; Gan S; Song J; Qiu CW; Cheng HM; Ren W; Bao Q
    Light Sci Appl; 2017 Feb; 6(2):e16204. PubMed ID: 30167226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices.
    Tang L; Wei W; Wei X; Nong J; Du C; Shi H
    Opt Express; 2018 Feb; 26(3):3709-3722. PubMed ID: 29401898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators.
    Brar VW; Jang MS; Sherrott M; Lopez JJ; Atwater HA
    Nano Lett; 2013 Jun; 13(6):2541-7. PubMed ID: 23621616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically reconfigurable architectured graphene for tunable plasmonic resonances.
    Kang P; Kim KH; Park HG; Nam S
    Light Sci Appl; 2018; 7():17. PubMed ID: 30839518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges.
    Vacacela Gomez C; Pisarra M; Gravina M; Sindona A
    Beilstein J Nanotechnol; 2017; 8():172-182. PubMed ID: 28243554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage.
    Hu H; Zhai F; Hu D; Li Z; Bai B; Yang X; Dai Q
    Nanoscale; 2015 Dec; 7(46):19493-500. PubMed ID: 26530788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.
    Zhang J; Zhu Z; Liu W; Yuan X; Qin S
    Nanoscale; 2015 Aug; 7(32):13530-6. PubMed ID: 26201255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas.
    Yu R; Pruneri V; García de Abajo FJ
    Sci Rep; 2016 Aug; 6():32144. PubMed ID: 27561789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots.
    Ma T; Yao B; Zheng Z; Liu Z; Ma W; Chen M; Chen H; Deng S; Xu N; Bao Q; Sun DM; Cheng HM; Ren W
    ACS Nano; 2022 Jun; 16(6):9041-9048. PubMed ID: 35696451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate phonon-mediated plasmon hybridization in coplanar graphene nanostructures for broadband plasmonic circuits.
    Yang X; Kong XT; Bai B; Li Z; Hu H; Qiu X; Dai Q
    Small; 2015 Feb; 11(5):591-6. PubMed ID: 25273326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of Electron Coherence and Fabry-Perot Standing Waves at a Graphene Edge.
    Allen MT; Shtanko O; Fulga IC; Wang JI; Nurgaliev D; Watanabe K; Taniguchi T; Akhmerov AR; Jarillo-Herrero P; Levitov LS; Yacoby A
    Nano Lett; 2017 Dec; 17(12):7380-7386. PubMed ID: 29045153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns.
    Alonso-González P; Nikitin AY; Golmar F; Centeno A; Pesquera A; Vélez S; Chen J; Navickaite G; Koppens F; Zurutuza A; Casanova F; Hueso LE; Hillenbrand R
    Science; 2014 Jun; 344(6190):1369-73. PubMed ID: 24855026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of optical absorption enhancement of plasmonic configuration by graphene on LiNbO
    Liu K; Lu F; Xu Y; Ma C
    Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34649234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic sensors based on graphene and graphene hybrid materials.
    Zhang Z; Lee Y; Haque MF; Leem J; Hsieh EY; Nam S
    Nano Converg; 2022 Jun; 9(1):28. PubMed ID: 35695997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic CROWs for Tunable Dispersion and High Quality Cavity Modes.
    Wood JJ; Lafone L; Hamm JM; Hess O; Oulton RF
    Sci Rep; 2015 Dec; 5():17724. PubMed ID: 26631579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological edge modes in multilayer graphene systems.
    Ge L; Wang L; Xiao M; Wen W; Chan CT; Han D
    Opt Express; 2015 Aug; 23(17):21585-95. PubMed ID: 26368137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocurrent in graphene harnessed by tunable intrinsic plasmons.
    Freitag M; Low T; Zhu W; Yan H; Xia F; Avouris P
    Nat Commun; 2013; 4():1951. PubMed ID: 23727714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-layer graphene for enhanced tunable infrared plasmonics.
    Rodrigo D; Tittl A; Limaj O; Abajo FJG; Pruneri V; Altug H
    Light Sci Appl; 2017 Jun; 6(6):e16277. PubMed ID: 30167262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.