These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26076267)

  • 1. Photonic-crystal waveguide structure by pattern-integrated interference lithography.
    Leibovici MC; Gaylord TK
    Opt Lett; 2015 Jun; 40(12):2806-9. PubMed ID: 26076267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures.
    Burrow GM; Leibovici MC; Gaylord TK
    Appl Opt; 2012 Jun; 51(18):4028-41. PubMed ID: 22722277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern-integrated interference lithography instrumentation.
    Burrow GM; Leibovici MC; Kummer JW; Gaylord TK
    Rev Sci Instrum; 2012 Jun; 83(6):063707. PubMed ID: 22755634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance simulation of 2D photonic-crystal devices fabricated by pattern-integrated interference lithography.
    Leibovici MC; Gaylord TK
    Opt Lett; 2014 Jul; 39(13):3798-801. PubMed ID: 24978740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Custom-modified three-dimensional periodic microstructures by pattern-integrated interference lithography.
    Leibovici MC; Gaylord TK
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1515-9. PubMed ID: 25121439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of two-dimensional superposed microstructure by interference lithography.
    Lü H; Zhao QL; Zhang QY; Niu DJ; Wang X
    Appl Opt; 2012 Jan; 51(3):302-5. PubMed ID: 22270656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.
    Lin Y; Harb A; Lozano K; Xu D; Chen KP
    Opt Express; 2009 Sep; 17(19):16625-31. PubMed ID: 19770878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure.
    Xu D; Chen KP; Ohlinger K; Lin Y
    Nanotechnology; 2011 Jan; 22(3):035303. PubMed ID: 21149952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8.
    Misawa H; Kondo T; Juodkazis S; Mizeikis V; Matsuo S
    Opt Express; 2006 Aug; 14(17):7943-53. PubMed ID: 19529163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic band-gap formation by optical-phase-mask lithography.
    Chan TY; Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046610. PubMed ID: 16711945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of ellipticity-controlled microlens arrays by controlling the parameters of the multiple-exposure two-beam interference technique.
    Do DB; Lai ND; Wu CY; Lin JH; Hsu CC
    Appl Opt; 2011 Feb; 50(4):579-85. PubMed ID: 21283250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern-integrated interference lithography: prospects for nano- and microelectronics.
    Leibovici MC; Burrow GM; Gaylord TK
    Opt Express; 2012 Oct; 20(21):23643-52. PubMed ID: 23188329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-beam interference lithography methodology.
    Stay JL; Burrow GM; Gaylord TK
    Rev Sci Instrum; 2011 Feb; 82(2):023115. PubMed ID: 21361581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique.
    Lai ND; Liang WP; Lin JH; Hsu CC; Lin CH
    Opt Express; 2005 Nov; 13(23):9605-11. PubMed ID: 19503163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of periodic nanovein structures by holography lithography technique.
    Lai ND; Huang YD; Lin JH; Do DB; Hsu CC
    Opt Express; 2009 Mar; 17(5):3362-9. PubMed ID: 19259173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of composite polymer microstructures fabricated by interference lithography.
    Singamaneni S; Chang S; Jang JH; Davis W; Thomas EL; Tsukruk VV
    Phys Chem Chem Phys; 2008 Jul; 10(28):4093-105. PubMed ID: 18612511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible fabrication of three-dimensional optical-domain photonic crystals using a combination of single-laser-exposure diffractive-optics lithography and template inversion.
    Chanda D; Zachari N; Haque M; Ng ML; Herman PR
    Opt Lett; 2009 Dec; 34(24):3920-2. PubMed ID: 20016658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution laser lithography system based on two-dimensional acousto-optic deflection.
    Koechlin M; Poberaj G; Günter P
    Rev Sci Instrum; 2009 Aug; 80(8):085105. PubMed ID: 19725679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond multi-beam interference lithography based on dynamic wavefront engineering.
    Zhou Q; Yang W; He F; Stoian R; Hui R; Cheng G
    Opt Express; 2013 Apr; 21(8):9851-61. PubMed ID: 23609691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensional polymer waveguide using hybrid lithography.
    Wang H; Liu Y; Jiang M; Chen C; Wang X; Wang F; Zhang D; Yi Y
    Appl Opt; 2015 Oct; 54(28):8412-6. PubMed ID: 26479617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.