BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 26076643)

  • 21. Bioconversion of 5-Hydroxymethylfurfural (HMF) to 2,5-Furandicarboxylic Acid (FDCA) by a Native Obligate Aerobic Bacterium, Acinetobacter calcoaceticus NL14.
    Sheng Y; Tan X; Zhou X; Xu Y
    Appl Biochem Biotechnol; 2020 Oct; 192(2):455-465. PubMed ID: 32394319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of Furandicarboxylic Acid Esters From Nonfood Feedstocks Without Concomitant Levulinic Acid Formation.
    van der Klis F; van Haveren J; van Es DS; Bitter JH
    ChemSusChem; 2017 Apr; 10(7):1460-1468. PubMed ID: 28124823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequential oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by an evolved aryl-alcohol oxidase.
    Viña-Gonzalez J; Martinez AT; Guallar V; Alcalde M
    Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140293. PubMed ID: 31676448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review.
    Guo M; Lu X; Xiong J; Zhang R; Li X; Qiao Y; Ji N; Yu Z
    ChemSusChem; 2022 Sep; 15(17):e202201074. PubMed ID: 35790081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biocatalytic production of 2,5-furandicarboxylic acid: recent advances and future perspectives.
    Yuan H; Liu H; Du J; Liu K; Wang T; Liu L
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):527-543. PubMed ID: 31820067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct production of 2, 5-Furandicarboxylicacid from raw biomass by manganese dioxide catalysis cooperated with ultrasonic-assisted diluted acid pretreatment.
    Chai Y; Yang H; Bai M; Chen A; Peng L; Yan B; Zhao D; Qin P; Peng C; Wang X
    Bioresour Technol; 2021 Oct; 337():125421. PubMed ID: 34153866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of MnO
    Hayashi E; Yamaguchi Y; Kamata K; Tsunoda N; Kumagai Y; Oba F; Hara M
    J Am Chem Soc; 2019 Jan; 141(2):890-900. PubMed ID: 30612429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid.
    Totaro G; Sisti L; Marchese P; Colonna M; Romano A; Gioia C; Vannini M; Celli A
    ChemSusChem; 2022 Jul; 15(13):e202200501. PubMed ID: 35438242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts.
    Pal P; Saravanamurugan S
    ChemSusChem; 2019 Jan; 12(1):145-163. PubMed ID: 30362263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst.
    Liu J; Wen S; Wang F; Zhu X; Zeng Z; Yin D
    Front Chem; 2022; 10():853112. PubMed ID: 35372283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation.
    Kubota SR; Choi KS
    ChemSusChem; 2018 Jul; 11(13):2138-2145. PubMed ID: 29905406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotransformation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by a Syntrophic Consortium of Engineered Synechococcus elongatus and Pseudomonas putida.
    Lin TY; Wen RC; Shen CR; Tsai SL
    Biotechnol J; 2020 Jun; 15(6):e1900357. PubMed ID: 32181597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature.
    Gorbanev YY; Klitgaard SK; Woodley JM; Christensen CH; Riisager A
    ChemSusChem; 2009 Jul; 2(7):672-5. PubMed ID: 19593753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in
    Yuan H; Liu Y; Lv X; Li J; Du G; Shi Z; Liu L
    J Microbiol Biotechnol; 2018 Dec; 28(12):1999-2008. PubMed ID: 30661342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60.
    Yuan H; Li J; Shin HD; Du G; Chen J; Shi Z; Liu L
    Bioresour Technol; 2018 Jan; 247():1184-1188. PubMed ID: 28893500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal Faces-Tailored Oxygen Vacancy in Au/CeO
    Wei Y; Zhang Y; Chen Y; Wang F; Cao Y; Guan W; Li X
    ChemSusChem; 2022 Jul; 15(13):e202101983. PubMed ID: 34644006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From lignocellulosic biomass to furans via 5-acetoxymethylfurfural as an alternative to 5-hydroxymethylfurfural.
    Kang ES; Hong YW; Chae da W; Kim B; Kim B; Kim YJ; Cho JK; Kim YG
    ChemSusChem; 2015 Apr; 8(7):1179-88. PubMed ID: 25619448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions.
    Cai J; Ma H; Zhang J; Song Q; Du Z; Huang Y; Xu J
    Chemistry; 2013 Oct; 19(42):14215-23. PubMed ID: 23999985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New bio-based monomers: tuneable polyester properties using branched diols from biomass.
    Arnaud SP; Wu L; Wong Chang MA; Comerford JW; Farmer TJ; Schmid M; Chang F; Li Z; Mascal M
    Faraday Discuss; 2017 Sep; 202():61-77. PubMed ID: 28671209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molten Salt-Assisted Synthesis of Co/N-Doped Carbon Hybrids for Aqueous-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Kumar R; Zhu Z; Chen C; Cai W; Woon-Chung Wong J; Zhao J
    ChemSusChem; 2022 Nov; 15(22):e202201333. PubMed ID: 36120725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.