These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26076677)

  • 1. Can inorganic salts tune electronic properties of graphene quantum dots?
    Colherinhas G; Fileti EE; Chaban VV
    Phys Chem Chem Phys; 2015 Jul; 17(26):17413-20. PubMed ID: 26076677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.
    Jin SH; Kim DH; Jun GH; Hong SH; Jeon S
    ACS Nano; 2013 Feb; 7(2):1239-45. PubMed ID: 23272894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Functionalisation and Photoluminescence of Graphene Quantum Dots.
    Sekiya R; Uemura Y; Naito H; Naka K; Haino T
    Chemistry; 2016 Jun; 22(24):8198-206. PubMed ID: 27115715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-Dependent Electronic Properties of Uniform Ensembles of Strongly Confined Graphene Quantum Dots.
    Ji Z; Dervishi E; Doorn SK; Sykora M
    J Phys Chem Lett; 2019 Mar; 10(5):953-959. PubMed ID: 30764609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Graphene Quantum Dots.
    Suzuki N; Wang Y; Elvati P; Qu ZB; Kim K; Jiang S; Baumeister E; Lee J; Yeom B; Bahng JH; Lee J; Violi A; Kotov NA
    ACS Nano; 2016 Feb; 10(2):1744-55. PubMed ID: 26743467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the properties of graphene quantum dots by passivation.
    Rani P; Dalal R; Srivastava S; Tankeshwar K
    Phys Chem Chem Phys; 2022 Nov; 24(42):26232-26240. PubMed ID: 36278955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the electronic and optical properties of graphene and boron-nitride quantum dots by molecular charge-transfer interactions: a theoretical study.
    Bandyopadhyay A; Yamijala SS; Pati SK
    Phys Chem Chem Phys; 2013 Sep; 15(33):13881-7. PubMed ID: 23842737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Band Gap of Graphene Is Efficiently Tuned by Monovalent Ions.
    Colherinhas G; Fileti EE; Chaban VV
    J Phys Chem Lett; 2015 Jan; 6(2):302-7. PubMed ID: 26263467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms.
    Feng J; Dong H; Pang B; Shao F; Zhang C; Yu L; Dong L
    Phys Chem Chem Phys; 2018 Jun; 20(22):15244-15252. PubMed ID: 29789854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the electronic structures of graphene quantum dot physisorption and chemisorption onto the TiO2 (110) surface: a first-principles calculation.
    Long R
    Chemphyschem; 2013 Feb; 14(3):579-82. PubMed ID: 23364942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the interaction of toxic Heavy Metals (Cd, Hg, Pb) with graphene quantum dots and infinite graphene.
    Shtepliuk I; Caffrey NM; Iakimov T; Khranovskyy V; Abrikosov IA; Yakimova R
    Sci Rep; 2017 Jun; 7(1):3934. PubMed ID: 28638144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots.
    Li X; Lau SP; Tang L; Ji R; Yang P
    Nanoscale; 2014 May; 6(10):5323-8. PubMed ID: 24699893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots.
    Qi BP; Hu H; Bao L; Zhang ZL; Tang B; Peng Y; Wang BS; Pang DW
    Nanoscale; 2015 Apr; 7(14):5969-73. PubMed ID: 25776563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe.
    Hwang E; Hwang HM; Shin Y; Yoon Y; Lee H; Yang J; Bak S; Lee H
    Sci Rep; 2016 Dec; 6():39448. PubMed ID: 27991584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unilamellar vesicles from amphiphilic graphene quantum dots.
    Nandi S; Kolusheva S; Malishev R; Trachtenberg A; Vinod TP; Jelinek R
    Chemistry; 2015 May; 21(21):7755-9. PubMed ID: 25800814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment.
    Luo P; Qiu Y; Guan X; Jiang L
    Phys Chem Chem Phys; 2014 Sep; 16(35):19011-6. PubMed ID: 25093991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose-graphene quantum dot composite membranes using ionic liquid.
    Colburn A; Wanninayake N; Kim DY; Bhattacharyya D
    J Memb Sci; 2018 Jun; 556():293-302. PubMed ID: 32095034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media.
    Ju J; Chen W
    Biosens Bioelectron; 2014 Aug; 58():219-25. PubMed ID: 24650437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of Spectroscopically Uniform Nanographenes.
    Yamato K; Sekiya R; Abe M; Haino T
    Chem Asian J; 2019 May; 14(10):1786-1791. PubMed ID: 30507036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts.
    Qu D; Zheng M; Du P; Zhou Y; Zhang L; Li D; Tan H; Zhao Z; Xie Z; Sun Z
    Nanoscale; 2013 Dec; 5(24):12272-7. PubMed ID: 24150696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.