These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 26077)

  • 21. Differently sized rDNA repeating units of Xenopus laevis are arranged as internally homogeneous clusters along the nucleolar organizer.
    Junakovic N; Poretti A; Amaldi F; Buongiorno-Nardelli M
    Nucleic Acids Res; 1978 Apr; 5(4):1335-43. PubMed ID: 652524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A study of early events in ribosomal gene amplification.
    Bird AP
    Cold Spring Harb Symp Quant Biol; 1978; 42 Pt 2():1179-83. PubMed ID: 277308
    [No Abstract]   [Full Text] [Related]  

  • 23. The amplification of ribosomal RNA genes involves a rolling circle intermediate.
    Hourcade D; Dressler D; Wolfson J
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2926-30. PubMed ID: 4517945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ribosomal genes and their proteins from Xenopus.
    Reeder RH; Wahn HL; Botchan P; Hipskind R; Sollner-Webb B
    Cold Spring Harb Symp Quant Biol; 1978; 42 Pt 2():1167-77. PubMed ID: 209931
    [No Abstract]   [Full Text] [Related]  

  • 25. Evidence for two functional regions in the Xenopus laevis RNA polymerase I promoter.
    Reeder RH; Wilkinson J; Bakken A; Morgan G; Busby SJ; Roan J; Sollner-Webb B
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 2():867-71. PubMed ID: 6305588
    [No Abstract]   [Full Text] [Related]  

  • 26. The size of the guanosine triphosphate pool active in the synthesis of stable RNA by stage 6 oocytes of Xenopus laevis.
    Dinauer MC; LaMarca MJ
    Exp Cell Res; 1976 Aug; 101(1):122-6. PubMed ID: 954858
    [No Abstract]   [Full Text] [Related]  

  • 27. Maintenance of nucleolar machineries and pre-rRNAs in remnant nucleolus of erythrocyte nuclei and remodeling in Xenopus egg extracts.
    Verheggen C; Le Panse S; Almouzni G; Hernandez-Verdun D
    Exp Cell Res; 2001 Sep; 269(1):23-34. PubMed ID: 11525636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-specific promoter methylations and gene inactivation.
    Doerfler W; Langner KD; Knebel D; Weyer U; Dobrzanski P; Knust-Kron B
    Prog Clin Biol Res; 1985; 198():133-55. PubMed ID: 2999811
    [No Abstract]   [Full Text] [Related]  

  • 29. Studies of the relationship between DNA methylation and transcription of the ribosomal RNA genes.
    Bird AP; Macleod D; Taggart MH
    Adv Exp Med Biol; 1982; 158():375-80. PubMed ID: 7158548
    [No Abstract]   [Full Text] [Related]  

  • 30. Sequences preceding the minimal promoter of the Xenopus somatic 5S RNA gene increase binding efficiency for transcription factors.
    Reynolds WF
    Nucleic Acids Res; 1989 Nov; 17(22):9381-94. PubMed ID: 2587260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of two types of ribosomal gene transcription in Xenopus laevis oocytes.
    Labhart P
    Gene Expr; 1992; 2(4):409-23. PubMed ID: 1472871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The putative promoter of a Xenopus laevis ribosomal gene is reduplicated.
    Moss T; Birnstiel ML
    Nucleic Acids Res; 1979 Aug; 6(12):3733-43. PubMed ID: 493120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure probing of a highly methylated region in Xenopus laevis 28S ribosomal RNA.
    Ajuh PM; Maden EB
    Biochem Soc Trans; 1993 Nov; 21(4):464S. PubMed ID: 8132032
    [No Abstract]   [Full Text] [Related]  

  • 34. Coupled demethylation of sites in a conserved sequence of Xenopus ribosomal DNA.
    La Volpe A; Taggart M; Macleod D; Bird A
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 2():585-92. PubMed ID: 6305578
    [No Abstract]   [Full Text] [Related]  

  • 35. Mapping of the Xenopus laevis 5.8S rDNA by restriction and DNA sequencing.
    Boseley PG; Tuyns A; Birnstiel ML
    Nucleic Acids Res; 1978 Apr; 5(4):1121-37. PubMed ID: 652517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methylated and unmethylated ribosomal RNA genes in the mouse.
    Bird AP; Taggart MH; Gehring CA
    J Mol Biol; 1981 Oct; 152(1):1-17. PubMed ID: 6279862
    [No Abstract]   [Full Text] [Related]  

  • 37. Synthesis and processing of ribosomal ribonucleic acid in eukaryotes.
    Planta RJ; Retèl J; Klootwijk J; Meyerink JH; De Jonge P; Van Keulen H; Brand RC
    Biochem Soc Trans; 1977; 5(2):462-6. PubMed ID: 332551
    [No Abstract]   [Full Text] [Related]  

  • 38. The structure and evolution of ribosomal and 5S DNAs in Xenopus laevis and Xenopus mulleri.
    Brown DD; Sugimoto K
    Cold Spring Harb Symp Quant Biol; 1974; 38():501-5. PubMed ID: 4524770
    [No Abstract]   [Full Text] [Related]  

  • 39. Electron microscope analysis of amplifying ribosomal DNA from Xenopus laevis.
    Buongiorno-Nardelli M; Amaldi F; Lava-Sanchez PA
    Exp Cell Res; 1976 Mar; 98(1):95-103. PubMed ID: 1253845
    [No Abstract]   [Full Text] [Related]  

  • 40. Quantitation of ribosomal RNA genes in fetal human oocyte nuclei using rRNA: DNA hybridization in situ. Evidence for increased multiplicity.
    Wolgemuth DJ; Jagiello GM; Henderson AS
    Exp Cell Res; 1979 Jan; 118(1):181-90. PubMed ID: 569590
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.