BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26077037)

  • 1. Interlocus gene conversion explains at least 2.7% of single nucleotide variants in human segmental duplications.
    Dumont BL
    BMC Genomics; 2015 Jun; 16(1):456. PubMed ID: 26077037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signals of historical interlocus gene conversion in human segmental duplications.
    Dumont BL; Eichler EE
    PLoS One; 2013; 8(10):e75949. PubMed ID: 24124524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased mutation and gene conversion within human segmental duplications.
    Vollger MR; Dishuck PC; Harvey WT; DeWitt WS; Guitart X; Goldberg ME; Rozanski AN; Lucas J; Asri M; ; Munson KM; Lewis AP; Hoekzema K; Logsdon GA; Porubsky D; Paten B; Harris K; Hsieh P; Eichler EE
    Nature; 2023 May; 617(7960):325-334. PubMed ID: 37165237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmental duplications in genome-wide significant loci and housekeeping genes; warning for GAPDH and ACTB.
    Ghani M; Sato C; Rogaeva E
    Neurobiol Aging; 2013 Jun; 34(6):1710.e1-4. PubMed ID: 23238109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlocus gene conversion events introduce deleterious mutations into at least 1% of human genes associated with inherited disease.
    Casola C; Zekonyte U; Phillips AD; Cooper DN; Hahn MW
    Genome Res; 2012 Mar; 22(3):429-35. PubMed ID: 22090377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Phylogenetic Approach Finds Abundant Interlocus Gene Conversion in Yeast.
    Ji X; Griffing A; Thorne JL
    Mol Biol Evol; 2016 Sep; 33(9):2469-76. PubMed ID: 27297467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of gene conversion in preserving rearrangement hotspots in the human genome.
    Fawcett JA; Innan H
    Trends Genet; 2013 Oct; 29(10):561-8. PubMed ID: 23953668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large genomic region free of GWAS-based common variants contains fertility-related genes.
    Qiu R; Chen C; Jiang H; Shen L; Wu M; Liu C
    PLoS One; 2013; 8(4):e61917. PubMed ID: 23613972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of interlocus gene conversion and crossover in segmental duplications under a neutral scenario.
    Hartasánchez DA; Vallès-Codina O; Brasó-Vives M; Navarro A
    G3 (Bethesda); 2014 Jun; 4(8):1479-89. PubMed ID: 24906640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.
    Uddin M; Sturge M; Peddle L; O'Rielly DD; Rahman P
    PLoS One; 2011; 6(12):e28853. PubMed ID: 22194928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal regions containing high-density and ambiguously mapped putative single nucleotide polymorphisms (SNPs) correlate with segmental duplications in the human genome.
    Estivill X; Cheung J; Pujana MA; Nakabayashi K; Scherer SW; Tsui LC
    Hum Mol Genet; 2002 Aug; 11(17):1987-95. PubMed ID: 12165560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental duplications and gene conversion: Human luteinizing hormone/chorionic gonadotropin beta gene cluster.
    Hallast P; Nagirnaja L; Margus T; Laan M
    Genome Res; 2005 Nov; 15(11):1535-46. PubMed ID: 16251463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex SNP-related sequence variation in segmental genome duplications.
    Fredman D; White SJ; Potter S; Eichler EE; Den Dunnen JT; Brookes AJ
    Nat Genet; 2004 Aug; 36(8):861-6. PubMed ID: 15247918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of segmental duplications, mouse genome synteny and recurrent cancer-associated amplicons in human chromosome 6p21-p12.
    Martin JW; Yoshimoto M; Ludkovski O; Thorner PS; Zielenska M; Squire JA; Nuin PA
    Cytogenet Genome Res; 2010 Jun; 128(4):199-213. PubMed ID: 20453501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations.
    Paudel R; Fedorova L; Fedorov A
    PLoS One; 2020; 15(4):e0232167. PubMed ID: 32353016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiallelic Positions in the Human Genome: Challenges for Genetic Analyses.
    Campbell IM; Gambin T; Jhangiani S; Grove ML; Veeraraghavan N; Muzny DM; Shaw CA; Gibbs RA; Boerwinkle E; Yu F; Lupski JR
    Hum Mutat; 2016 Mar; 37(3):231-234. PubMed ID: 26670213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements.
    Armengol L; Pujana MA; Cheung J; Scherer SW; Estivill X
    Hum Mol Genet; 2003 Sep; 12(17):2201-8. PubMed ID: 12915466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Very low rate of gene conversion in the yeast genome.
    Casola C; Conant GC; Hahn MW
    Mol Biol Evol; 2012 Dec; 29(12):3817-26. PubMed ID: 22844073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Traffic of genetic information between segmental duplications flanking the typical 22q11.2 deletion in velo-cardio-facial syndrome/DiGeorge syndrome.
    Pavlicek A; House R; Gentles AJ; Jurka J; Morrow BE
    Genome Res; 2005 Nov; 15(11):1487-95. PubMed ID: 16251458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between frequency of non-allelic homologous recombination and homology properties: evidence from homology-mediated CNV mutations in the human genome.
    Peng Z; Zhou W; Fu W; Du R; Jin L; Zhang F
    Hum Mol Genet; 2015 Mar; 24(5):1225-33. PubMed ID: 25324539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.