These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 26077322)
1. A comparative study of antimony accumulation in plants growing in two mining areas in Iran, Moghanlo, and Patyar. Jamali Hajiani N; Ghaderian SM; Karimi N; Schat H Environ Sci Pollut Res Int; 2015 Nov; 22(21):16542-53. PubMed ID: 26077322 [TBL] [Abstract][Full Text] [Related]
2. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R; Biddau R; Dore E; Vacca A; Marini L Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381 [TBL] [Abstract][Full Text] [Related]
3. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Okkenhaug G; Zhu YG; Luo L; Lei M; Li X; Mulder J Environ Pollut; 2011 Oct; 159(10):2427-34. PubMed ID: 21767897 [TBL] [Abstract][Full Text] [Related]
4. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Murciego AM; Sánchez AG; González MA; Gil EP; Gordillo CT; Fernández JC; Triguero TB Environ Pollut; 2007 Jan; 145(1):15-21. PubMed ID: 16730108 [TBL] [Abstract][Full Text] [Related]
5. Mobility of antimony in soil and its availability to plants. Hammel W; Debus R; Steubing L Chemosphere; 2000 Dec; 41(11):1791-8. PubMed ID: 11057620 [TBL] [Abstract][Full Text] [Related]
6. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland). Gál J; Hursthouse A; Cuthbert S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1263-74. PubMed ID: 17654146 [TBL] [Abstract][Full Text] [Related]
8. Vegetation type impacts microbial interaction with antimony contaminants in a mining-contaminated soil environment. Sun X; Li B; Han F; Xiao E; Wang Q; Xiao T; Sun W Environ Pollut; 2019 Sep; 252(Pt B):1872-1881. PubMed ID: 31374407 [TBL] [Abstract][Full Text] [Related]
9. Antimony in soils of SW Poland-an overview of potentially enriched sites. Lewińska K; Karczewska A Environ Monit Assess; 2019 Jan; 191(2):70. PubMed ID: 30643996 [TBL] [Abstract][Full Text] [Related]
10. Effects of antimony and arsenic on antioxidant enzyme activities of two steppic plant species in an old antimony mining area. Benhamdi A; Bentellis A; Rached O; Du Laing G; Mechakra A Biol Trace Elem Res; 2014 Apr; 158(1):96-104. PubMed ID: 24563031 [TBL] [Abstract][Full Text] [Related]
11. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China. Wei C; Deng Q; Wu F; Fu Z; Xu L Biol Trace Elem Res; 2011 Dec; 144(1-3):1150-8. PubMed ID: 21547400 [TBL] [Abstract][Full Text] [Related]
12. Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments. Shangguan YX; Zhao L; Qin Y; Hou H; Zhang N Ecotoxicol Environ Saf; 2016 Nov; 133():1-9. PubMed ID: 27395817 [TBL] [Abstract][Full Text] [Related]
13. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil. Hockmann K; Tandy S; Studer B; Evangelou MWH; Schulin R Environ Pollut; 2018 Jul; 238():255-262. PubMed ID: 29567447 [TBL] [Abstract][Full Text] [Related]
14. Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. Karimi N; Ghaderian SM; Maroofi H; Schat H Int J Phytoremediation; 2010 Feb; 12(2):159-73. PubMed ID: 20734613 [TBL] [Abstract][Full Text] [Related]
15. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Baroni F; Boscagli A; Protano G; Riccobono F Environ Pollut; 2000 Aug; 109(2):347-52. PubMed ID: 15092905 [TBL] [Abstract][Full Text] [Related]
16. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Fu Z; Wu F; Mo C; Deng Q; Meng W; Giesy JP Sci Total Environ; 2016 Jan; 539():97-104. PubMed ID: 26356182 [TBL] [Abstract][Full Text] [Related]
17. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities. Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A; Regina IS Sci Total Environ; 2012 Nov; 439():35-43. PubMed ID: 23063636 [TBL] [Abstract][Full Text] [Related]
18. Atmospheric deposition of antimony in a typical mercury-antimony mining area, Shaanxi Province, Southwest China. Ao M; Qiu G; Zhang C; Xu X; Zhao L; Feng X; Qin S; Meng B Environ Pollut; 2019 Feb; 245():173-182. PubMed ID: 30419458 [TBL] [Abstract][Full Text] [Related]
19. The Potential Use of Vetiveria zizanioides for the Phytoremediation of Antimony, Arsenic and Their Co-Contamination. Mirza N; Mubarak H; Chai LY; Yong W; Khan MJ; Khan QU; Hashmi MZ; Farooq U; Sarwar R; Yang ZH Bull Environ Contam Toxicol; 2017 Oct; 99(4):511-517. PubMed ID: 28785982 [TBL] [Abstract][Full Text] [Related]
20. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants. Zhu Y; Yang J; Wang L; Lin Z; Dai J; Wang R; Yu Y; Liu H; Rensing C; Feng R Sci Total Environ; 2020 Oct; 738():140232. PubMed ID: 32806353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]