These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 26077322)
21. Assessment and distribution of antimony in soils around three coal mines, Anhui, China. Qi C; Liu G; Kang Y; Lam PK; Chou C J Air Waste Manag Assoc; 2011 Aug; 61(8):850-7. PubMed ID: 21874956 [TBL] [Abstract][Full Text] [Related]
22. Antimony in the Soil-Plant System in an Sb Mining/Smelting Area of Southwest China. Ning Z; Xiao T; Xiao E Int J Phytoremediation; 2015; 17(11):1081-9. PubMed ID: 26067424 [TBL] [Abstract][Full Text] [Related]
23. Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Tighe M; Ashley P; Lockwood P; Wilson S Sci Total Environ; 2005 Jul; 347(1-3):175-86. PubMed ID: 16084977 [TBL] [Abstract][Full Text] [Related]
24. Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu-W mine in Korea. Jung MC; Thornton I; Chon HT Sci Total Environ; 2002 Aug; 295(1-3):81-9. PubMed ID: 12186294 [TBL] [Abstract][Full Text] [Related]
25. Influence of ore processing activity on Hg, As and Sb contamination and fractionation in soils in a former mining site of Monte Amiata ore district (Italy). Protano G; Nannoni F Chemosphere; 2018 May; 199():320-330. PubMed ID: 29448200 [TBL] [Abstract][Full Text] [Related]
26. Speciation and location of arsenic and antimony in rice samples around antimony mining area. Wu TL; Cui XD; Cui PX; Ata-Ul-Karim ST; Sun Q; Liu C; Fan TT; Gong H; Zhou DM; Wang YJ Environ Pollut; 2019 Sep; 252(Pt B):1439-1447. PubMed ID: 31265954 [TBL] [Abstract][Full Text] [Related]
27. As and Sb are more labile and toxic to water spinach (Ipomoea aquatica) in recently contaminated soils than historically co-contaminated soils. Egodawatta LP; Macoustra GK; Ngo LK; Jolley DF Environ Sci Process Impacts; 2018 May; 20(5):833-844. PubMed ID: 29693094 [TBL] [Abstract][Full Text] [Related]
28. Effect of soil organic matter on antimony bioavailability after the remediation process. Nakamaru YM; Martín Peinado FJ Environ Pollut; 2017 Sep; 228():425-432. PubMed ID: 28554032 [TBL] [Abstract][Full Text] [Related]
29. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. He M Environ Geochem Health; 2007 Jun; 29(3):209-19. PubMed ID: 17351815 [TBL] [Abstract][Full Text] [Related]
30. Effect of antimony in soils of an Sb mine on the photosynthetic pigments and antioxidant system of Dittrichia viscosa leaves. Garrido I; Ortega A; Hernández M; Fernández-Pozo L; Cabezas J; Espinosa F Environ Geochem Health; 2021 Apr; 43(4):1367-1383. PubMed ID: 32562108 [TBL] [Abstract][Full Text] [Related]
31. Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine, Guizhou province, China. Zhang G; Liu CQ; Liu H; Hu J; Han G; Li L J Environ Monit; 2009 Sep; 11(9):1570-8. PubMed ID: 19724824 [TBL] [Abstract][Full Text] [Related]
32. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils. Steely S; Amarasiriwardena D; Xing B Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851 [TBL] [Abstract][Full Text] [Related]
33. Distributions and impact factors of antimony in topsoils and moss in Ny-Ålesund, Arctic. Jia N; Sun L; He X; You K; Zhou X; Long N Environ Pollut; 2012 Dec; 171():72-7. PubMed ID: 22885219 [TBL] [Abstract][Full Text] [Related]
34. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. De Gregori I; Fuentes E; Rojas M; Pinochet H; Potin-Gautier M J Environ Monit; 2003 Apr; 5(2):287-95. PubMed ID: 12729270 [TBL] [Abstract][Full Text] [Related]
35. Microbial response to antimony-arsenic distribution and geochemical factors at arable soil around an antimony mining site. Huang H; Lin K; Lei L; Li Y; Li Y; Liang K; Shangguan Y; Xu H Environ Sci Pollut Res Int; 2023 Apr; 30(16):47972-47984. PubMed ID: 36746862 [TBL] [Abstract][Full Text] [Related]
36. The Release of Antimony from Mine Dump Soils in the Presence and Absence of Forest Litter. Lewińska K; Karczewska A; Siepak M; Gałka B Int J Environ Res Public Health; 2018 Nov; 15(12):. PubMed ID: 30477215 [TBL] [Abstract][Full Text] [Related]
37. Bacterial community profile of contaminated soils in a typical antimony mining site. Wang N; Zhang S; He M Environ Sci Pollut Res Int; 2018 Jan; 25(1):141-152. PubMed ID: 28039624 [TBL] [Abstract][Full Text] [Related]
38. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants. Wilson SC; Leech CD; Butler L; Lisle L; Ashley PM; Lockwood PV J Hazard Mater; 2013 Oct; 261():801-7. PubMed ID: 23433572 [TBL] [Abstract][Full Text] [Related]
39. DGT and selective extractions reveal differences in arsenic and antimony uptake by the white icicle radish (Raphanus sativus). Ngo LK; Price HL; Bennett WW; Teasdale PR; Jolley DF Environ Pollut; 2020 Apr; 259():113815. PubMed ID: 31884210 [TBL] [Abstract][Full Text] [Related]
40. Arsenic (As), antimony (Sb), and lead (Pb) availability from Au-mine Technosols: a case study of transfer to natural vegetation cover in temperate climates. Wanat N; Joussein E; Soubrand M; Lenain JF Environ Geochem Health; 2014 Aug; 36(4):783-95. PubMed ID: 24474610 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]