BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 26077429)

  • 1. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate.
    Keil KP; Vezina CM
    Epigenomics; 2015; 7(3):413-25. PubMed ID: 26077429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia.
    Dobosy JR; Roberts JL; Fu VX; Jarrard DF
    J Urol; 2007 Mar; 177(3):822-31. PubMed ID: 17296351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications.
    Guan M; Zhou X; Soulitzis N; Spandidos DA; Popescu NC
    Clin Cancer Res; 2006 Mar; 12(5):1412-9. PubMed ID: 16533763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia.
    Basu S; Majumder S; Bhowal A; Ghosh A; Naskar S; Nandy S; Mukherjee S; Sinha RK; Basu K; Karmakar D; Banerjee S; Sengupta S
    PLoS One; 2015; 10(5):e0125560. PubMed ID: 25938433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Loss of the gamma-catenin gene through epigenetic and genetic pathways in human prostate cancer.
    Shiina H; Breault JE; Basset WW; Enokida H; Urakami S; Li LC; Okino ST; Deguchi M; Kaneuchi M; Terashima M; Yoneda T; Shigeno K; Carroll PR; Igawa M; Dahiya R
    Cancer Res; 2005 Mar; 65(6):2130-8. PubMed ID: 15781623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hedgehog signaling in prostate growth and benign prostate hyperplasia.
    Vezina CM; Bushman AW
    Curr Urol Rep; 2007 Jul; 8(4):275-80. PubMed ID: 18519011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [IDENTIFICATION OF A NEW DIAGNOSTIC MARKERS OF PROSTATIC CANCER, USING NOTI-MICROCHIPS].
    Vozianov SO; Kashuba VI; Grygorenko VM; Gordiyuk VV; Danylets RO; Bondarenko YM; Vikarchuk MV
    Klin Khir; 2016 Apr; (4):54-7. PubMed ID: 27434957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequent 14-3-3 sigma promoter methylation in benign and malignant prostate lesions.
    Henrique R; Jerónimo C; Hoque MO; Carvalho AL; Oliveira J; Teixeira MR; Lopes C; Sidransky D
    DNA Cell Biol; 2005 Apr; 24(4):264-9. PubMed ID: 15812243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AIM2, an IFN-inducible cytosolic DNA sensor, in the development of benign prostate hyperplasia and prostate cancer.
    Ponomareva L; Liu H; Duan X; Dickerson E; Shen H; Panchanathan R; Choubey D
    Mol Cancer Res; 2013 Oct; 11(10):1193-202. PubMed ID: 23864729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative promoter methylation profile of prostate cancer.
    Jerónimo C; Henrique R; Hoque MO; Mambo E; Ribeiro FR; Varzim G; Oliveira J; Teixeira MR; Lopes C; Sidransky D
    Clin Cancer Res; 2004 Dec; 10(24):8472-8. PubMed ID: 15623627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Androgen receptor DNA methylation regulates the timing and androgen sensitivity of mouse prostate ductal development.
    Keil KP; Abler LL; Laporta J; Altmann HM; Yang B; Jarrard DF; Hernandez LL; Vezina CM
    Dev Biol; 2014 Dec; 396(2):237-45. PubMed ID: 25446526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CpG hypermethylation of MDR1 gene contributes to the pathogenesis and progression of human prostate cancer.
    Enokida H; Shiina H; Igawa M; Ogishima T; Kawakami T; Bassett WW; Anast JW; Li LC; Urakami S; Terashima M; Verma M; Kawahara M; Nakagawa M; Kane CJ; Carroll PR; Dahiya R
    Cancer Res; 2004 Sep; 64(17):5956-62. PubMed ID: 15342374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphogenetic concepts of normal and abnormal growth in the human prostate.
    Bonkhoff H; Remberger K
    Virchows Arch; 1998 Sep; 433(3):195-202. PubMed ID: 9769121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hedgehog signaling in prostate epithelial-mesenchymal growth regulation.
    Peng YC; Joyner AL
    Dev Biol; 2015 Apr; 400(1):94-104. PubMed ID: 25641695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fingerprinting the diseased prostate: associations between BPH and prostate cancer.
    Shah US; Getzenberg RH
    J Cell Biochem; 2004 Jan; 91(1):161-9. PubMed ID: 14689588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of galectins in normal, benign and malignant prostate epithelial cells: silencing of galectin-3 expression in prostate cancer by its promoter methylation.
    Ahmed H; Banerjee PP; Vasta GR
    Biochem Biophys Res Commun; 2007 Jun; 358(1):241-6. PubMed ID: 17481580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-dependent expression of the androgen receptor gene in the prostate and its implication in glandular differentiation and hyperplasia.
    Prins GS; Jung MH; Vellanoweth RL; Chatterjee B; Roy AK
    Dev Genet; 1996; 18(2):99-106. PubMed ID: 8934871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer.
    Schaeffer EM; Marchionni L; Huang Z; Simons B; Blackman A; Yu W; Parmigiani G; Berman DM
    Oncogene; 2008 Dec; 27(57):7180-91. PubMed ID: 18794802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression profiles of lysophosphatidic acid-related molecules in the prostate: relevance to prostate cancer and benign hyperplasia.
    Zeng Y; Kakehi Y; Nouh MA; Tsunemori H; Sugimoto M; Wu XX
    Prostate; 2009 Feb; 69(3):283-92. PubMed ID: 19025891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Genomic imprinting of insulin-like growth factor II in prostate cancer and its clinical significance].
    Liu ZW; Zhou FJ; Luo YM; Qin ZK; Wang DJ; Luo JH; Han H; Li YH; Wang H
    Ai Zheng; 2006 Jun; 25(6):765-70. PubMed ID: 16764778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.