These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 26077448)

  • 41. Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells.
    Lin G; Xu N; Xi R
    Nature; 2008 Oct; 455(7216):1119-23. PubMed ID: 18806781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. dBre1/dSet1-dependent pathway for histone H3K4 trimethylation has essential roles in controlling germline stem cell maintenance and germ cell differentiation in the Drosophila ovary.
    Xuan T; Xin T; He J; Tan J; Gao Y; Feng S; He L; Zhao G; Li M
    Dev Biol; 2013 Jul; 379(2):167-81. PubMed ID: 23624310
    [TBL] [Abstract][Full Text] [Related]  

  • 43. FoxA transcription factor Fork head maintains the intestinal stem/progenitor cell identities in Drosophila.
    Lan Q; Cao M; Kollipara RK; Rosa JB; Kittler R; Jiang H
    Dev Biol; 2018 Jan; 433(2):324-343. PubMed ID: 29108672
    [TBL] [Abstract][Full Text] [Related]  

  • 44. No intestinal stem cell regeneration after complete progenitor ablation in Drosophila adult midgut.
    Lu Y; Li Z
    J Genet Genomics; 2015 Feb; 42(2):83-6. PubMed ID: 25697103
    [No Abstract]   [Full Text] [Related]  

  • 45. Transcription Factor Antagonism Controls Enteroendocrine Cell Specification from Intestinal Stem Cells.
    Li Y; Pang Z; Huang H; Wang C; Cai T; Xi R
    Sci Rep; 2017 Apr; 7(1):988. PubMed ID: 28428611
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An image analysis method for regionally defined cellular phenotyping of the
    Viitanen A; Gullmets J; Morikka J; Katajisto P; Mattila J; Hietakangas V
    Cell Rep Methods; 2021 Sep; 1(5):100059. PubMed ID: 35474669
    [TBL] [Abstract][Full Text] [Related]  

  • 47. miR-19b downregulates intestinal SOCS3 to reduce intestinal inflammation in Crohn's disease.
    Cheng X; Zhang X; Su J; Zhang Y; Zhou W; Zhou J; Wang C; Liang H; Chen X; Shi R; Zen K; Zhang CY; Zhang H
    Sci Rep; 2015 May; 5():10397. PubMed ID: 25997679
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Origin and dynamic lineage characteristics of the developing Drosophila midgut stem cells.
    Takashima S; Aghajanian P; Younossi-Hartenstein A; Hartenstein V
    Dev Biol; 2016 Aug; 416(2):347-60. PubMed ID: 27321560
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methods to assess intestinal stem cell activity in response to microbes in Drosophila melanogaster.
    Houtz PL; Buchon N
    Methods Mol Biol; 2014; 1213():171-82. PubMed ID: 25173382
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells.
    Ren D; Wang M; Guo W; Huang S; Wang Z; Zhao X; Du H; Song L; Peng X
    Cell Tissue Res; 2014 Dec; 358(3):763-78. PubMed ID: 25296715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptional repression of miR-200 family members by Nanog in colon cancer cells induces epithelial-mesenchymal transition (EMT).
    Pan Q; Meng L; Ye J; Wei X; Shang Y; Tian Y; He Y; Peng Z; Chen L; Chen W; Bian X; Wang R
    Cancer Lett; 2017 Apr; 392():26-38. PubMed ID: 28163188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The cellular homeostasis of the gut: what the Drosophila model points out.
    Pasco MY; Loudhaief R; Gallet A
    Histol Histopathol; 2015 Mar; 30(3):277-92. PubMed ID: 25293339
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of intestinal stem cells in mammals and Drosophila.
    Wang P; Hou SX
    J Cell Physiol; 2010 Jan; 222(1):33-7. PubMed ID: 19739102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic adult tracheal plasticity drives stem cell adaptation to changes in intestinal homeostasis in Drosophila.
    Perochon J; Yu Y; Aughey GN; Medina AB; Southall TD; Cordero JB
    Nat Cell Biol; 2021 May; 23(5):485-496. PubMed ID: 33972729
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Snail controls proliferation of Drosophila ovarian epithelial follicle stem cells, independently of E-cadherin.
    Tseng CY; Kao SH; Hsu HJ
    Dev Biol; 2016 Jun; 414(2):142-8. PubMed ID: 27141871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Escargot and Scratch regulate neural commitment by antagonizing Notch activity in Drosophila sensory organs.
    Ramat A; Audibert A; Louvet-Vallée S; Simon F; Fichelson P; Gho M
    Development; 2016 Aug; 143(16):3024-34. PubMed ID: 27471258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. microRNA-203 suppresses invasion and epithelial-mesenchymal transition induction via targeting NUAK1 in head and neck cancer.
    Obayashi M; Yoshida M; Tsunematsu T; Ogawa I; Sasahira T; Kuniyasu H; Imoto I; Abiko Y; Xu D; Fukunaga S; Tahara H; Kudo Y; Nagao T; Takata T
    Oncotarget; 2016 Feb; 7(7):8223-39. PubMed ID: 26882562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MicroRNA-224 regulates self-renewal of mouse spermatogonial stem cells via targeting DMRT1.
    Cui N; Hao G; Zhao Z; Wang F; Cao J; Yang A
    J Cell Mol Med; 2016 Aug; 20(8):1503-12. PubMed ID: 27099200
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MicroRNA-146b improves intestinal injury in mouse colitis by activating nuclear factor-κB and improving epithelial barrier function.
    Nata T; Fujiya M; Ueno N; Moriichi K; Konishi H; Tanabe H; Ohtake T; Ikuta K; Kohgo Y
    J Gene Med; 2013; 15(6-7):249-60. PubMed ID: 23813877
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hallmarks of aging Drosophila intestinal stem cells.
    Rodriguez-Fernandez IA; Tauc HM; Jasper H
    Mech Ageing Dev; 2020 Sep; 190():111285. PubMed ID: 32544407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.