These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 26077679)
21. Sequential neurological improvements after conservative treatment in patients with complete motor paralysis caused by cervical spinal cord injury without bone and disc injury. Mori E; Ueta T; Maeda T; Ideta R; Yugué I; Kawano O; Shiba K J Neurosurg Spine; 2018 Jul; 29(1):1-9. PubMed ID: 29676669 [TBL] [Abstract][Full Text] [Related]
22. A review of oscillating field stimulation to treat human spinal cord injury. Shapiro S World Neurosurg; 2014; 81(5-6):830-5. PubMed ID: 23159651 [TBL] [Abstract][Full Text] [Related]
23. Wireless control of intraspinal microstimulation in a rodent model of paralysis. Grahn PJ; Lee KH; Kasasbeh A; Mallory GW; Hachmann JT; Dube JR; Kimble CJ; Lobel DA; Bieber A; Jeong JH; Bennet KE; Lujan JL J Neurosurg; 2015 Jul; 123(1):232-242. PubMed ID: 25479124 [TBL] [Abstract][Full Text] [Related]
24. Engaging Cervical Spinal Cord Networks to Reenable Volitional Control of Hand Function in Tetraplegic Patients. Lu DC; Edgerton VR; Modaber M; AuYong N; Morikawa E; Zdunowski S; Sarino ME; Sarrafzadeh M; Nuwer MR; Roy RR; Gerasimenko Y Neurorehabil Neural Repair; 2016 Nov; 30(10):951-962. PubMed ID: 27198185 [TBL] [Abstract][Full Text] [Related]
25. Recovery of assisted overground stepping in a patient with chronic motor complete spinal cord injury: a case report. Murillo N; Kumru H; Opisso E; Padullés JM; Medina J; Vidal J; Kofler M NeuroRehabilitation; 2012; 31(4):401-7. PubMed ID: 23232164 [TBL] [Abstract][Full Text] [Related]
27. Formation of a novel supraspinal-spinal connectome that relearns the same motor task after complete paralysis. Urban LS; Thornton MA; Ingraham Dixie KL; Dale EA; Zhong H; Phelps PE; Burdick JW; Edgerton VR J Neurophysiol; 2021 Sep; 126(3):957-966. PubMed ID: 34406891 [TBL] [Abstract][Full Text] [Related]
28. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. Gerasimenko Y; Gorodnichev R; Puhov A; Moshonkina T; Savochin A; Selionov V; Roy RR; Lu DC; Edgerton VR J Neurophysiol; 2015 Feb; 113(3):834-42. PubMed ID: 25376784 [TBL] [Abstract][Full Text] [Related]
29. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. Minassian K; Hofstoetter US CNS Neurosci Ther; 2016 Apr; 22(4):262-70. PubMed ID: 26890324 [TBL] [Abstract][Full Text] [Related]
30. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. Knikou M; Smith AC; Mummidisetty CK J Neurophysiol; 2015 Apr; 113(7):2447-60. PubMed ID: 25609110 [TBL] [Abstract][Full Text] [Related]
31. Neurocontrol of Movement in Humans With Spinal Cord Injury. Dimitrijevic MR; Danner SM; Mayr W Artif Organs; 2015 Oct; 39(10):823-33. PubMed ID: 26471132 [TBL] [Abstract][Full Text] [Related]
32. Iron 'ElectriRx' man: Overground stepping in an exoskeleton combined with noninvasive spinal cord stimulation after paralysis. Gad PN; Gerasimenko YP; Zdunowski S; Sayenko D; Haakana P; Turner A; Lu D; Roy RR; Edgerton VR Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1124-7. PubMed ID: 26736463 [TBL] [Abstract][Full Text] [Related]
33. Predictors of volitional motor recovery with epidural stimulation in individuals with chronic spinal cord injury. Mesbah S; Ball T; Angeli C; Rejc E; Dietz N; Ugiliweneza B; Harkema S; Boakye M Brain; 2021 Mar; 144(2):420-433. PubMed ID: 33367527 [TBL] [Abstract][Full Text] [Related]
34. Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord. Capogrosso M; Gandar J; Greiner N; Moraud EM; Wenger N; Shkorbatova P; Musienko P; Minev I; Lacour S; Courtine G J Neural Eng; 2018 Apr; 15(2):026024. PubMed ID: 29339580 [TBL] [Abstract][Full Text] [Related]
35. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury. Norton JA; Gorassini MA J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422 [TBL] [Abstract][Full Text] [Related]
36. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury. Inanici F; Brighton LN; Samejima S; Hofstetter CP; Moritz CT IEEE Trans Neural Syst Rehabil Eng; 2021; 29():310-319. PubMed ID: 33400652 [TBL] [Abstract][Full Text] [Related]
37. Acute neuromodulation restores spinally-induced motor responses after severe spinal cord injury. Taccola G; Gad P; Culaclii S; Wang PM; Liu W; Edgerton VR Exp Neurol; 2020 May; 327():113246. PubMed ID: 32057795 [TBL] [Abstract][Full Text] [Related]
38. Postoperative segmental C5 palsy after cervical laminoplasty may occur without intraoperative nerve injury: a prospective study with transcranial electric motor-evoked potentials. Tanaka N; Nakanishi K; Fujiwara Y; Kamei N; Ochi M Spine (Phila Pa 1976); 2006 Dec; 31(26):3013-7. PubMed ID: 17172998 [TBL] [Abstract][Full Text] [Related]
39. Combined cervical transcutaneous with lumbosacral epidural stimulation improves voluntary control of stepping movements in spinal cord injured individuals. Angeli CA; Gerasimenko Y Front Bioeng Biotechnol; 2023; 11():1073716. PubMed ID: 36815892 [No Abstract] [Full Text] [Related]
40. Electrical Spinal Stimulation, and Imagining of Lower Limb Movements to Modulate Brain-Spinal Connectomes That Control Locomotor-Like Behavior. Gerasimenko Y; Sayenko D; Gad P; Kozesnik J; Moshonkina T; Grishin A; Pukhov A; Moiseev S; Gorodnichev R; Selionov V; Kozlovskaya I; Edgerton VR Front Physiol; 2018; 9():1196. PubMed ID: 30283341 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]