These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 26077901)
1. Investigations into the Biosynthesis, Regulation, and Self-Resistance of Toxoflavin in Pseudomonas protegens Pf-5. Philmus B; Shaffer BT; Kidarsa TA; Yan Q; Raaijmakers JM; Begley TP; Loper JE Chembiochem; 2015 Aug; 16(12):1782-90. PubMed ID: 26077901 [TBL] [Abstract][Full Text] [Related]
2. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Kim J; Kim JG; Kang Y; Jang JY; Jog GJ; Lim JY; Kim S; Suga H; Nagamatsu T; Hwang I Mol Microbiol; 2004 Nov; 54(4):921-34. PubMed ID: 15522077 [TBL] [Abstract][Full Text] [Related]
3. Identification of potential genetic components involved in the deviant quorum-sensing signaling pathways of Burkholderia glumae through a functional genomics approach. Chen R; Barphagha IK; Ham JH Front Cell Infect Microbiol; 2015; 5():22. PubMed ID: 25806356 [TBL] [Abstract][Full Text] [Related]
4. Dissection of quorum-sensing genes in Burkholderia glumae reveals non-canonical regulation and the new regulatory gene tofM for toxoflavin production. Chen R; Barphagha IK; Karki HS; Ham JH PLoS One; 2012; 7(12):e52150. PubMed ID: 23284909 [TBL] [Abstract][Full Text] [Related]
5. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Lee J; Park J; Kim S; Park I; Seo YS Mol Plant Pathol; 2016 Jan; 17(1):65-76. PubMed ID: 25845410 [TBL] [Abstract][Full Text] [Related]
6. A simple and sensitive biosensor strain for detecting toxoflavin using β-galactosidase activity. Choi O; Lee Y; Han I; Kim H; Goo E; Kim J; Hwang I Biosens Bioelectron; 2013 Dec; 50():256-61. PubMed ID: 23871874 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the N-methyltransferases involved in the biosynthesis of toxoflavin, fervenulin and reumycin from Streptomyces hiroshimensis ATCC53615. Su C; Yan Y; Guo X; Luo J; Liu C; Zhang Z; Xiang WS; Huang SX Org Biomol Chem; 2019 Jan; 17(3):477-481. PubMed ID: 30565634 [TBL] [Abstract][Full Text] [Related]
8. A novel light-dependent selection marker system in plants. Koh S; Kim H; Kim J; Goo E; Kim YJ; Choi O; Jwa NS; Ma J; Nagamatsu T; Moon JS; Hwang I Plant Biotechnol J; 2011 Apr; 9(3):348-58. PubMed ID: 20731786 [TBL] [Abstract][Full Text] [Related]
9. Identification of the product of toxoflavin lyase: degradation via a Baeyer-Villiger oxidation. Philmus B; Abdelwahed S; Williams HJ; Fenwick MK; Ealick SE; Begley TP J Am Chem Soc; 2012 Mar; 134(11):5326-30. PubMed ID: 22304755 [TBL] [Abstract][Full Text] [Related]
10. Toxoflavin lyase enzyme as a marker for selecting potato plant transformants. Kim MS; Kim H; Moon JS; Hwang I; Joung H; Jeon JH Biosci Biotechnol Biochem; 2012; 76(12):2354-6. PubMed ID: 23221711 [TBL] [Abstract][Full Text] [Related]
11. AiiA-mediated quorum quenching does not affect virulence or toxoflavin expression in Burkholderia glumae SL2376. Park JY; Lee YH; Yang KY; Kim YC Lett Appl Microbiol; 2010 Dec; 51(6):619-24. PubMed ID: 21039666 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional analysis of phytotoxin toxoflavin-degrading enzyme. Jung WS; Lee J; Kim MI; Ma J; Nagamatsu T; Goo E; Kim H; Hwang I; Han J; Rhee S PLoS One; 2011; 6(7):e22443. PubMed ID: 21799856 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of a novel metagenomic enzyme capable of degrading bacterial phytotoxin toxoflavin. Choi JE; Nguyen CM; Lee B; Park JH; Oh JY; Choi JS; Kim JC; Song JK PLoS One; 2018; 13(1):e0183893. PubMed ID: 29293506 [TBL] [Abstract][Full Text] [Related]
14. Biochemical evidence for ToxR and ToxJ binding to the tox operons of Burkholderia glumae and mutational analysis of ToxR. Kim J; Oh J; Choi O; Kang Y; Kim H; Goo E; Ma J; Nagamatsu T; Moon JS; Hwang I J Bacteriol; 2009 Aug; 191(15):4870-8. PubMed ID: 19465657 [TBL] [Abstract][Full Text] [Related]
15. Genome re-seqeunce and analysis of Burkholderia glumae strain AU6208 and evidence of toxoflavin: A potential bacterial toxin. Hussain A; Shahbaz M; Tariq M; Ibrahim M; Hong X; Naeem F; Khalid Z; Raza HMZ; Bo Z; Bin L Comput Biol Chem; 2020 Jun; 86():107245. PubMed ID: 32172200 [TBL] [Abstract][Full Text] [Related]
16. Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae. Melanson RA; Barphagha I; Osti S; Lelis TP; Karki HS; Chen R; Shrestha BK; Ham JH Microbiology (Reading); 2017 Feb; 163(2):266-279. PubMed ID: 28036242 [TBL] [Abstract][Full Text] [Related]
17. Biochemical Characterization and Structural Basis of Reactivity and Regioselectivity Differences between Burkholderia thailandensis and Burkholderia glumae 1,6-Didesmethyltoxoflavin N-Methyltransferase. Fenwick MK; Almabruk KH; Ealick SE; Begley TP; Philmus B Biochemistry; 2017 Aug; 56(30):3934-3944. PubMed ID: 28665591 [TBL] [Abstract][Full Text] [Related]
18. Toxoflavin Produced by Li X; Li Y; Wang R; Wang Q; Lu L Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824447 [TBL] [Abstract][Full Text] [Related]
19. Burkholderia glumae ToxA Is a Dual-Specificity Methyltransferase That Catalyzes the Last Two Steps of Toxoflavin Biosynthesis. Fenwick MK; Philmus B; Begley TP; Ealick SE Biochemistry; 2016 May; 55(19):2748-59. PubMed ID: 27070241 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome analysis to understand the effects of the toxoflavin and tropolone produced by phytopathogenic Burkholderia on Escherichia coli. Park J; Lee HH; Jung H; Seo YS J Microbiol; 2019 Sep; 57(9):781-794. PubMed ID: 31452043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]