These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26077987)

  • 21. Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs.
    Bueno EM; Bilgen B; Barabino GA
    Tissue Eng; 2005; 11(11-12):1699-709. PubMed ID: 16411815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical Analysis of Porcine Cartilage Elasticity.
    Hudnut AW; Trasolini NA; Hatch GFR; Armani AM
    Ann Biomed Eng; 2019 Jan; 47(1):202-212. PubMed ID: 30251031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional tissue engineering of chondral and osteochondral constructs.
    Lima EG; Mauck RL; Han SH; Park S; Ng KW; Ateshian GA; Hung CT
    Biorheology; 2004; 41(3-4):577-90. PubMed ID: 15299288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in mechanical behaviour of articular cartilage due to changes in depth varying material properties--a nonhomogeneous poroelastic model study.
    Li LP; Shirazi-Adl A; Buschmann MD
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):45-52. PubMed ID: 12186733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells.
    Luo L; Thorpe SD; Buckley CT; Kelly DJ
    Biomed Mater; 2015 Sep; 10(5):055011. PubMed ID: 26391756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MR elastography monitoring of tissue-engineered constructs.
    Othman SF; Curtis ET; Plautz SA; Pannier AK; Butler SD; Xu H
    NMR Biomed; 2012 Mar; 25(3):452-63. PubMed ID: 21387443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of the temporal deposition of extracellular matrix on the mechanical properties of tissue-engineered cartilage.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Tissue Eng Part A; 2014 May; 20(9-10):1476-85. PubMed ID: 24377881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loading and boundary condition influences in a poroelastic finite element model of cartilage stresses in a triaxial compression bioreactor.
    Kallemeyn NA; Grosland NM; Pedersen DR; Martin JA; Brown TD
    Iowa Orthop J; 2006; 26():5-16. PubMed ID: 16789442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Stress-strain properties of the tissue-engineered cartilage].
    Wang Y; Yang Z; Xie H; Li S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):181-4. PubMed ID: 11450529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new bioreactor for the controlled application of complex mechanical stimuli for cartilage tissue engineering.
    Laganà K; Moretti M; Dubini G; Raimondi MT
    Proc Inst Mech Eng H; 2008 Jul; 222(5):705-15. PubMed ID: 18756689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extraction of mechanical properties of articular cartilage from osmotic swelling behavior monitored using high frequency ultrasound.
    Wang Q; Zheng YP; Niu HJ; Mak AF
    J Biomech Eng; 2007 Jun; 129(3):413-22. PubMed ID: 17536909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid Detection of Shear-Induced Damage in Tissue-Engineered Cartilage Using Ultrasound.
    Mansour JM; Motavalli M; Dennis JE; Kean TJ; Caplan AI; Berilla JA; Welter JF
    Tissue Eng Part C Methods; 2018 Aug; 24(8):443-456. PubMed ID: 29999475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models.
    Li L; Shirazi-Adl A; Buschmann MD
    Biorheology; 2003; 40(1-3):227-33. PubMed ID: 12454409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite element study of a tissue-engineered cartilage transplant in human tibiofemoral joint.
    Vahdati A; Wagner DR
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1211-21. PubMed ID: 21809943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative assessment of articular cartilage with morphologic, acoustic and mechanical properties obtained using high-frequency ultrasound.
    Wang SZ; Huang YP; Saarakkala S; Zheng YP
    Ultrasound Med Biol; 2010 Mar; 36(3):512-27. PubMed ID: 20172450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative ultrasound can assess the regeneration process of tissue-engineered cartilage using a complex between adherent bone marrow cells and a three-dimensional scaffold.
    Hattori K; Takakura Y; Ohgushi H; Habata T; Uematsu K; Yamauchi J; Yamashita K; Fukuchi T; Sato M; Ikeuchi K
    Arthritis Res Ther; 2005; 7(3):R552-9. PubMed ID: 15899042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering.
    Spitters TW; Leijten JC; Deus FD; Costa IB; van Apeldoorn AA; van Blitterswijk CA; Karperien M
    Tissue Eng Part C Methods; 2013 Oct; 19(10):774-83. PubMed ID: 23410098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering.
    Williams KA; Saini S; Wick TM
    Biotechnol Prog; 2002; 18(5):951-63. PubMed ID: 12363345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering.
    Bilgen B; Sucosky P; Neitzel GP; Barabino GA
    Biotechnol Bioeng; 2006 Dec; 95(6):1009-22. PubMed ID: 17031866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.