These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 26079051)
1. Proline-15 creates an amphipathic wedge in maculatin 1.1 peptides that drives lipid membrane disruption. Sani MA; Lee TH; Aguilar MI; Separovic F Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2277-89. PubMed ID: 26079051 [TBL] [Abstract][Full Text] [Related]
2. Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering. Fernandez DI; Lee TH; Sani MA; Aguilar MI; Separovic F Biophys J; 2013 Apr; 104(7):1495-507. PubMed ID: 23561526 [TBL] [Abstract][Full Text] [Related]
3. Comparison of reversible membrane destabilisation induced by antimicrobial peptides derived from Australian frogs. Lee TH; Heng C; Separovic F; Aguilar MI Biochim Biophys Acta; 2014 Sep; 1838(9):2205-15. PubMed ID: 24593995 [TBL] [Abstract][Full Text] [Related]
4. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901 [TBL] [Abstract][Full Text] [Related]
5. Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Balla MS; Bowie JH; Separovic F Eur Biophys J; 2004 Apr; 33(2):109-16. PubMed ID: 13680211 [TBL] [Abstract][Full Text] [Related]
6. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246 [TBL] [Abstract][Full Text] [Related]
7. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. Balatti GE; Martini MF; Pickholz M J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106 [TBL] [Abstract][Full Text] [Related]
8. Membrane binding and perturbation studies of the antimicrobial peptides caerin, citropin, and maculatin. Chia CS; Gong Y; Bowie JH; Zuegg J; Cooper MA Biopolymers; 2011; 96(2):147-57. PubMed ID: 20564028 [TBL] [Abstract][Full Text] [Related]
9. Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers. Fernandez DI; Le Brun AP; Lee TH; Bansal P; Aguilar MI; James M; Separovic F Eur Biophys J; 2013 Jan; 42(1):47-59. PubMed ID: 22354331 [TBL] [Abstract][Full Text] [Related]
10. One pathogen two stones: are Australian tree frog antimicrobial peptides synergistic against human pathogens? Sani MA; Carne S; Overall SA; Poulhazan A; Separovic F Eur Biophys J; 2017 Oct; 46(7):639-646. PubMed ID: 28478484 [TBL] [Abstract][Full Text] [Related]
11. Lipid composition regulates the conformation and insertion of the antimicrobial peptide maculatin 1.1. Sani MA; Whitwell TC; Separovic F Biochim Biophys Acta; 2012 Feb; 1818(2):205-11. PubMed ID: 21801711 [TBL] [Abstract][Full Text] [Related]
12. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483 [TBL] [Abstract][Full Text] [Related]
13. Effect of phosphatidylcholine bilayer thickness and molecular order on the binding of the antimicrobial peptide maculatin 1.1. Lee TH; Sani MA; Overall S; Separovic F; Aguilar MI Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):300-309. PubMed ID: 29030245 [TBL] [Abstract][Full Text] [Related]
14. Membrane interactions of antimicrobial peptides from Australian frogs. Fernandez DI; Gehman JD; Separovic F Biochim Biophys Acta; 2009 Aug; 1788(8):1630-8. PubMed ID: 19013126 [TBL] [Abstract][Full Text] [Related]
15. Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata solution structure and biological activity. Chia BC; Carver JA; Mulhern TD; Bowie JH Eur J Biochem; 2000 Apr; 267(7):1894-908. PubMed ID: 10727928 [TBL] [Abstract][Full Text] [Related]
16. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Chen R; Mark AE Eur Biophys J; 2011 Apr; 40(4):545-53. PubMed ID: 21267557 [TBL] [Abstract][Full Text] [Related]
17. Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Mechler A; Praporski S; Atmuri K; Boland M; Separovic F; Martin LL Biophys J; 2007 Dec; 93(11):3907-16. PubMed ID: 17704161 [TBL] [Abstract][Full Text] [Related]
18. Coarse-grained simulations of the membrane-active antimicrobial Peptide maculatin 1.1. Bond PJ; Parton DL; Clark JF; Sansom MS Biophys J; 2008 Oct; 95(8):3802-15. PubMed ID: 18641064 [TBL] [Abstract][Full Text] [Related]
19. Differential Interaction of Antimicrobial Peptides with Lipid Structures Studied by Coarse-Grained Molecular Dynamics Simulations. Balatti GE; Ambroggio EE; Fidelio GD; Martini MF; Pickholz M Molecules; 2017 Oct; 22(10):. PubMed ID: 29053635 [TBL] [Abstract][Full Text] [Related]
20. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. Lee TH; Hall KN; Swann MJ; Popplewell JF; Unabia S; Park Y; Hahm KS; Aguilar MI Biochim Biophys Acta; 2010 Mar; 1798(3):544-57. PubMed ID: 20100457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]