These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 26079051)
21. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
22. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording. Priyadarshini D; Ivica J; Separovic F; de Planque MRR Biophys Chem; 2022 Feb; 281():106721. PubMed ID: 34808479 [TBL] [Abstract][Full Text] [Related]
23. The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. Chia CS; Torres J; Cooper MA; Arkin IT; Bowie JH FEBS Lett; 2002 Feb; 512(1-3):47-51. PubMed ID: 11852050 [TBL] [Abstract][Full Text] [Related]
24. Surface behaviour and peptide-lipid interactions of the antibiotic peptides, Maculatin and Citropin. Ambroggio EE; Separovic F; Bowie J; Fidelio GD Biochim Biophys Acta; 2004 Jul; 1664(1):31-7. PubMed ID: 15238255 [TBL] [Abstract][Full Text] [Related]
25. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Kobayashi S; Takeshima K; Park CB; Kim SC; Matsuzaki K Biochemistry; 2000 Jul; 39(29):8648-54. PubMed ID: 10913273 [TBL] [Abstract][Full Text] [Related]
26. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
27. Micelle bound structure and DNA interaction of brevinin-2-related peptide, an antimicrobial peptide derived from frog skin. Bandyopadhyay S; Ng BY; Chong C; Lim MZ; Gill SK; Lee KH; Sivaraman J; Chatterjee C J Pept Sci; 2014 Oct; 20(10):811-21. PubMed ID: 25044683 [TBL] [Abstract][Full Text] [Related]
29. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide. Wang Y; Chen CH; Hu D; Ulmschneider MB; Ulmschneider JP Nat Commun; 2016 Nov; 7():13535. PubMed ID: 27874004 [TBL] [Abstract][Full Text] [Related]
30. Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1. Fernandez DI; Sani MA; Miles AJ; Wallace BA; Separovic F Biochim Biophys Acta; 2013 Aug; 1828(8):1863-72. PubMed ID: 23506683 [TBL] [Abstract][Full Text] [Related]
31. Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study. Abbassi F; Galanth C; Amiche M; Saito K; Piesse C; Zargarian L; Hani K; Nicolas P; Lequin O; Ladram A Biochemistry; 2008 Oct; 47(40):10513-25. PubMed ID: 18795798 [TBL] [Abstract][Full Text] [Related]
32. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687 [TBL] [Abstract][Full Text] [Related]
33. The relationship between the binding to and permeabilization of phospholipid bilayer membranes by GS14dK4, a designed analog of the antimicrobial peptide gramicidin S. Abraham T; Marwaha S; Kobewka DM; Lewis RN; Prenner EJ; Hodges RS; McElhaney RN Biochim Biophys Acta; 2007 Sep; 1768(9):2089-98. PubMed ID: 17686454 [TBL] [Abstract][Full Text] [Related]
34. Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer. Rai DK; Qian S Sci Rep; 2017 Jun; 7(1):3719. PubMed ID: 28623332 [TBL] [Abstract][Full Text] [Related]
35. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374 [TBL] [Abstract][Full Text] [Related]
36. Membrane interactions of antimicrobial peptides from Australian tree frogs. Boland MP; Separovic F Biochim Biophys Acta; 2006 Sep; 1758(9):1178-83. PubMed ID: 16580625 [TBL] [Abstract][Full Text] [Related]
37. The antimicrobial peptide maculatin self assembles in parallel to form a pore in phospholipid bilayers. Sani MA; Le Brun AP; Separovic F Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183204. PubMed ID: 31981588 [TBL] [Abstract][Full Text] [Related]
38. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
39. Interaction of the antimicrobial peptide cyclo(RRWWRF) with membranes by molecular dynamics simulations. Appelt C; Eisenmenger F; Kühne R; Schmieder P; Söderhäll JA Biophys J; 2005 Oct; 89(4):2296-306. PubMed ID: 16040748 [TBL] [Abstract][Full Text] [Related]
40. Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations. Kandasamy SK; Larson RG Chem Phys Lipids; 2004 Nov; 132(1):113-32. PubMed ID: 15530453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]