These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Destgeer G; Sung HJ Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538 [TBL] [Abstract][Full Text] [Related]
6. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices. Adamson DN; Mustafi D; Zhang JX; Zheng B; Ismagilov RF Lab Chip; 2006 Sep; 6(9):1178-86. PubMed ID: 16929397 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic on-demand droplet merging using surface acoustic waves. Sesen M; Alan T; Neild A Lab Chip; 2014 Sep; 14(17):3325-33. PubMed ID: 24972001 [TBL] [Abstract][Full Text] [Related]
8. Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Rezk AR; Qi A; Friend JR; Li WH; Yeo LY Lab Chip; 2012 Feb; 12(4):773-9. PubMed ID: 22193520 [TBL] [Abstract][Full Text] [Related]
9. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Wang Z; Zhe J Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739 [TBL] [Abstract][Full Text] [Related]
10. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets. Liu Y; Jung SY; Collier CP Anal Chem; 2009 Jun; 81(12):4922-8. PubMed ID: 19441820 [TBL] [Abstract][Full Text] [Related]
11. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices. Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018 [TBL] [Abstract][Full Text] [Related]
12. Transport of a Micro Liquid Plug in a Gas-Phase Flow in a Microchannel. Kazoe Y; Matsuno T; Yamashiro I; Mawatari K; Kitamori T Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424356 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of coalescence of plugs with a hydrophilic wetting layer induced by flow in a microfluidic chemistrode. Liu Y; Ismagilov RF Langmuir; 2009 Mar; 25(5):2854-9. PubMed ID: 19239191 [TBL] [Abstract][Full Text] [Related]
15. Cell detachment and label-free cell sorting using modulated surface acoustic waves (SAWs) in droplet-based microfluidics. Bussonnière A; Miron Y; Baudoin M; Bou Matar O; Grandbois M; Charette P; Renaudin A Lab Chip; 2014 Sep; 14(18):3556-63. PubMed ID: 25029952 [TBL] [Abstract][Full Text] [Related]
16. Planar chip device for PCR and hybridization with surface acoustic wave pump. Guttenberg Z; Muller H; Habermüller H; Geisbauer A; Pipper J; Felbel J; Kielpinski M; Scriba J; Wixforth A Lab Chip; 2005 Mar; 5(3):308-17. PubMed ID: 15726207 [TBL] [Abstract][Full Text] [Related]
17. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Sachs S; Baloochi M; Cierpka C; König J Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303 [TBL] [Abstract][Full Text] [Related]
18. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control. Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493 [TBL] [Abstract][Full Text] [Related]
19. Electrostatic charging and control of droplets in microfluidic devices. Zhou H; Yao S Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121 [TBL] [Abstract][Full Text] [Related]
20. Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing. Devendran C; Choi K; Han J; Ai Y; Neild A; Collins DJ Lab Chip; 2020 Aug; 20(15):2674-2688. PubMed ID: 32608464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]