These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 26079263)
1. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models. Altini M; Casale P; Penders J; Amft O J Biomed Inform; 2015 Aug; 56():195-204. PubMed ID: 26079263 [TBL] [Abstract][Full Text] [Related]
2. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features. Altini M; Penders J; Vullers R; Amft O Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124 [TBL] [Abstract][Full Text] [Related]
3. Personalization of Energy Expenditure Estimation in Free Living Using Topic Models. Altini M; Casale P; Penders JF; Amft O IEEE J Biomed Health Inform; 2015 Sep; 19(5):1577-86. PubMed ID: 25838531 [TBL] [Abstract][Full Text] [Related]
4. Cardiorespiratory fitness estimation from heart rate and body movement in daily life. Bonomi AG; Ten Hoor GA; de Morree HM; Plasqui G; Sartor F J Appl Physiol (1985); 2020 Mar; 128(3):493-500. PubMed ID: 31999530 [TBL] [Abstract][Full Text] [Related]
5. Cardiorespiratory fitness estimation using wearable sensors: Laboratory and free-living analysis of context-specific submaximal heart rates. Altini M; Casale P; Penders J; Ten Velde G; Plasqui G; Amft O J Appl Physiol (1985); 2016 May; 120(9):1082-96. PubMed ID: 26940653 [TBL] [Abstract][Full Text] [Related]
6. Accurate prediction of energy expenditure using a shoe-based activity monitor. Sazonova N; Browning RC; Sazonov E Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868 [TBL] [Abstract][Full Text] [Related]
7. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning. Altini M; Penders J; Vullers R; Amft O IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168 [TBL] [Abstract][Full Text] [Related]
8. Predictive validity of three ActiGraph energy expenditure equations for children. Trost SG; Way R; Okely AD Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910 [TBL] [Abstract][Full Text] [Related]
9. Personalizing energy expenditure estimation using physiological signals normalization during activities of daily living. Altini M; Penders J; Vullers R; Amft O Physiol Meas; 2014 Sep; 35(9):1797-811. PubMed ID: 25120177 [TBL] [Abstract][Full Text] [Related]
10. Cardiorespiratory fitness estimation in free-living using wearable sensors. Altini M; Casale P; Penders J; Amft O Artif Intell Med; 2016 Mar; 68():37-46. PubMed ID: 26948954 [TBL] [Abstract][Full Text] [Related]
11. An evaluation of the IDEEA™ activity monitor for estimating energy expenditure. Whybrow S; Ritz P; Horgan GW; Stubbs RJ Br J Nutr; 2013 Jan; 109(1):173-83. PubMed ID: 22464547 [TBL] [Abstract][Full Text] [Related]
12. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry. Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594 [TBL] [Abstract][Full Text] [Related]
13. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. Price K; Bird SR; Lythgo N; Raj IS; Wong JY; Lynch C J Med Eng Technol; 2017 Apr; 41(3):208-215. PubMed ID: 27919170 [TBL] [Abstract][Full Text] [Related]
14. Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men. Villars C; Bergouignan A; Dugas J; Antoun E; Schoeller DA; Roth H; Maingon AC; Lefai E; Blanc S; Simon C J Appl Physiol (1985); 2012 Dec; 113(11):1763-71. PubMed ID: 23019315 [TBL] [Abstract][Full Text] [Related]
15. Energy expenditure prediction using a miniaturized ear-worn sensor. Atallah L; Leong JJ; Lo B; Yang GZ Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349 [TBL] [Abstract][Full Text] [Related]
16. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930 [TBL] [Abstract][Full Text] [Related]
17. Energy expenditure and heart rate response to breaking up sedentary time with three different physical activity interventions. Carter SE; Jones M; Gladwell VF Nutr Metab Cardiovasc Dis; 2015 May; 25(5):503-9. PubMed ID: 25816733 [TBL] [Abstract][Full Text] [Related]
18. Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors. Altini M; Penders J; Amft O IEEE J Biomed Health Inform; 2016 Mar; 20(2):469-75. PubMed ID: 25594986 [TBL] [Abstract][Full Text] [Related]
19. Validation and calibration of physical activity monitors in children. Puyau MR; Adolph AL; Vohra FA; Butte NF Obes Res; 2002 Mar; 10(3):150-7. PubMed ID: 11886937 [TBL] [Abstract][Full Text] [Related]
20. Relationships between oxygen uptake, dynamic body acceleration and heart rate in humans. D'silva LA; Cardew A; Qasem L; Wilson RP; Lewis MJ J Sports Med Phys Fitness; 2015 Oct; 55(10):1049-57. PubMed ID: 24947810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]