These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 26079368)

  • 1. An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials.
    Tolaymat T; El Badawy A; Sequeira R; Genaidy A
    J Hazard Mater; 2015 Nov; 298():270-81. PubMed ID: 26079368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A system-of-systems approach as a broad and integrated paradigm for sustainable engineered nanomaterials.
    Tolaymat T; El Badawy A; Sequeira R; Genaidy A
    Sci Total Environ; 2015 Apr; 511():595-607. PubMed ID: 25590540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The path towards healthier societies, environments, and economies: a broader perspective for sustainable engineered nanomaterials.
    Tolaymat T; Abdelraheem W; Badawy AE; Dionysiou D; Genaidy A
    Clean Technol Environ Policy; 2016; 18(7):2279-2291. PubMed ID: 31297042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent stakeholder engagement in practice: Lessons learned from applying comprehensive environmental assessment to research planning for nanomaterials.
    Powers C; Hendren C; Wang A; Davis JM
    Integr Environ Assess Manag; 2014 Oct; 10(4):498-510. PubMed ID: 24729532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A web-based tool to engage stakeholders in informing research planning for future decisions on emerging materials.
    Powers CM; Grieger KD; Hendren CO; Meacham CA; Gurevich G; Lassiter MG; Money ES; Lloyd JM; Beaulieu SM
    Sci Total Environ; 2014 Feb; 470-471():660-8. PubMed ID: 24176714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study.
    Baalousha M; Yang Y; Vance ME; Colman BP; McNeal S; Xu J; Blaszczak J; Steele M; Bernhardt E; Hochella MF
    Sci Total Environ; 2016 Jul; 557-558():740-53. PubMed ID: 27046139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moving toward exposure and risk evaluation of nanomaterials: challenges and future directions.
    Thomas T; Bahadori T; Savage N; Thomas K
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(4):426-33. PubMed ID: 20049808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk.
    Costa PM; Fadeel B
    Toxicol Appl Pharmacol; 2016 May; 299():101-11. PubMed ID: 26721310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From cradle-to-grave at the nanoscale: gaps in U.S. regulatory oversight along the nanomaterial life cycle.
    Beaudrie CE; Kandlikar M; Satterfield T
    Environ Sci Technol; 2013 Jun; 47(11):5524-34. PubMed ID: 23668487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neurotoxic potential of engineered nanomaterials.
    Boyes WK; Chen R; Chen C; Yokel RA
    Neurotoxicology; 2012 Aug; 33(4):902-10. PubMed ID: 22198707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems.
    Mohanty A; Wu Y; Cao B
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8457-68. PubMed ID: 25109266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches.
    Kwak JI; An YJ
    Environ Res; 2016 Nov; 151():368-382. PubMed ID: 27540869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive environmental assessment approach to engineered nanomaterials.
    Davis JM
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):139-49. PubMed ID: 23255303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials in the environment: from materials to high-throughput screening to organisms.
    Thomas CR; George S; Horst AM; Ji Z; Miller RJ; Peralta-Videa JR; Xia T; Pokhrel S; Mädler L; Gardea-Torresdey JL; Holden PA; Keller AA; Lenihan HS; Nel AE; Zink JI
    ACS Nano; 2011 Jan; 5(1):13-20. PubMed ID: 21261306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review.
    Wu S; Gaillard JF; Gray KA
    Sci Total Environ; 2021 Aug; 780():146496. PubMed ID: 34030287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis.
    Gottschalk F; Sonderer T; Scholz RW; Nowack B
    Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of life cycle concepts for the development of safe nanoproducts.
    Som C; Berges M; Chaudhry Q; Dusinska M; Fernandes TF; Olsen SI; Nowack B
    Toxicology; 2010 Mar; 269(2-3):160-9. PubMed ID: 20025922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaches to the safety assessment of engineered nanomaterials (ENM) in food.
    Cockburn A; Bradford R; Buck N; Constable A; Edwards G; Haber B; Hepburn P; Howlett J; Kampers F; Klein C; Radomski M; Stamm H; Wijnhoven S; Wildemann T
    Food Chem Toxicol; 2012 Jun; 50(6):2224-42. PubMed ID: 22245376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.