BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 26079630)

  • 1. Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance.
    Schama R; Pedrini N; Juárez MP; Nelson DR; Torres AQ; Valle D; Mesquita RD
    Insect Biochem Mol Biol; 2016 Feb; 69():91-104. PubMed ID: 26079630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.
    Traverso L; Lavore A; Sierra I; Palacio V; Martinez-Barnetche J; Latorre-Estivalis JM; Mougabure-Cueto G; Francini F; Lorenzo MG; Rodríguez MH; Ons S; Rivera-Pomar RV
    PLoS Negl Trop Dis; 2017 Feb; 11(2):e0005313. PubMed ID: 28199333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of detoxification-related gene superfamilies across five hemipteran species.
    Volonté M; Traverso L; Estivalis JML; Almeida FC; Ons S
    BMC Genomics; 2022 Nov; 23(1):757. PubMed ID: 36396986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis.
    Zhou D; Liu X; Sun Y; Ma L; Shen B; Zhu C
    PLoS One; 2015; 10(11):e0143387. PubMed ID: 26588704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integument CYP genes of the largest genome-wide cytochrome P450 expansions in triatomines participate in detoxification in deltamethrin-resistant Triatoma infestans.
    Dulbecco AB; Moriconi DE; Calderón-Fernández GM; Lynn S; McCarthy A; Roca-Acevedo G; Salamanca-Moreno JA; Juárez MP; Pedrini N
    Sci Rep; 2018 Jul; 8(1):10177. PubMed ID: 29976934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of salivary CYP4EM1 and CYP4EM2 gene silencing on the life span of Chagas disease vector Rhodnius prolixus (Hemiptera, Reduviidae) exposed to sublethal dose of deltamethrin.
    Paim RMM; Pessoa GCD; Nascimento BWL; Nascimento AMD; Pinheiro LC; Koerich LB; Diotaiuti L; Araujo RN; Sant'Anna MRV; Gontijo NF; Pereira MH
    Insect Mol Biol; 2022 Feb; 31(1):49-59. PubMed ID: 34478211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families.
    Yan L; Yang P; Jiang F; Cui N; Ma E; Qiao C; Cui F
    BMC Genomics; 2012 Nov; 13():609. PubMed ID: 23140097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deltamethrin resistance in Chagas disease vectors colonizing oil palm plantations: implications for vector control strategies in a public health-agriculture interface.
    Calderón JM; Fuya P; Santacoloma L; González C
    Parasit Vectors; 2020 Apr; 13(1):163. PubMed ID: 32245509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of supergene families associated with insecticide resistance.
    Ranson H; Claudianos C; Ortelli F; Abgrall C; Hemingway J; Sharakhova MV; Unger MF; Collins FH; Feyereisen R
    Science; 2002 Oct; 298(5591):179-81. PubMed ID: 12364796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management.
    Mougabure-Cueto G; Picollo MI
    Acta Trop; 2015 Sep; 149():70-85. PubMed ID: 26003952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of detoxification genes in two cerambycid beetles, Rhaphuma horsfieldi and Xylotrechus quadripes (Coleoptera: Cerambycidae: Clytini).
    Zhao YJ; Wang ZQ; Zhu JY; Liu NY
    Comp Biochem Physiol B Biochem Mol Biol; 2020 Jun; 243-244():110431. PubMed ID: 32142896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide and expression-profiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae).
    Yan ZW; He ZB; Yan ZT; Si FL; Zhou Y; Chen B
    Pest Manag Sci; 2018 Aug; 74(8):1810-1820. PubMed ID: 29393554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodnius prolixus intoxicated.
    Alzogaray RA; Zerba EN
    J Insect Physiol; 2017; 97():93-113. PubMed ID: 27113321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Analysis of Repetitive DNA between the Main Vectors of Chagas Disease: Triatoma infestans and Rhodnius prolixus.
    Pita S; Mora P; Vela J; Palomeque T; Sánchez A; Panzera F; Lorite P
    Int J Mol Sci; 2018 Apr; 19(5):. PubMed ID: 29695139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus.
    Filée J; Rouault JD; Harry M; Hua-Van A
    BMC Genomics; 2015 Dec; 16():1061. PubMed ID: 26666222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection.
    Mesquita RD; Vionette-Amaral RJ; Lowenberger C; Rivera-Pomar R; Monteiro FA; Minx P; Spieth J; Carvalho AB; Panzera F; Lawson D; Torres AQ; Ribeiro JM; Sorgine MH; Waterhouse RM; Montague MJ; Abad-Franch F; Alves-Bezerra M; Amaral LR; Araujo HM; Araujo RN; Aravind L; Atella GC; Azambuja P; Berni M; Bittencourt-Cunha PR; Braz GR; Calderón-Fernández G; Carareto CM; Christensen MB; Costa IR; Costa SG; Dansa M; Daumas-Filho CR; De-Paula IF; Dias FA; Dimopoulos G; Emrich SJ; Esponda-Behrens N; Fampa P; Fernandez-Medina RD; da Fonseca RN; Fontenele M; Fronick C; Fulton LA; Gandara AC; Garcia ES; Genta FA; Giraldo-Calderón GI; Gomes B; Gondim KC; Granzotto A; Guarneri AA; Guigó R; Harry M; Hughes DS; Jablonka W; Jacquin-Joly E; Juárez MP; Koerich LB; Lange AB; Latorre-Estivalis JM; Lavore A; Lawrence GG; Lazoski C; Lazzari CR; Lopes RR; Lorenzo MG; Lugon MD; Majerowicz D; Marcet PL; Mariotti M; Masuda H; Megy K; Melo AC; Missirlis F; Mota T; Noriega FG; Nouzova M; Nunes RD; Oliveira RL; Oliveira-Silveira G; Ons S; Orchard I; Pagola L; Paiva-Silva GO; Pascual A; Pavan MG; Pedrini N; Peixoto AA; Pereira MH; Pike A; Polycarpo C; Prosdocimi F; Ribeiro-Rodrigues R; Robertson HM; Salerno AP; Salmon D; Santesmasses D; Schama R; Seabra-Junior ES; Silva-Cardoso L; Silva-Neto MA; Souza-Gomes M; Sterkel M; Taracena ML; Tojo M; Tu ZJ; Tubio JM; Ursic-Bedoya R; Venancio TM; Walter-Nuno AB; Wilson D; Warren WC; Wilson RK; Huebner E; Dotson EM; Oliveira PL
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14936-41. PubMed ID: 26627243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic analysis of detoxification genes in the mosquito Aedes aegypti.
    Strode C; Wondji CS; David JP; Hawkes NJ; Lumjuan N; Nelson DR; Drane DR; Karunaratne SH; Hemingway J; Black WC; Ranson H
    Insect Biochem Mol Biol; 2008 Jan; 38(1):113-23. PubMed ID: 18070670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription analysis of neonicotinoid resistance in Mediterranean (MED) populations of B. tabaci reveal novel cytochrome P450s, but no nAChR mutations associated with the phenotype.
    Ilias A; Lagnel J; Kapantaidaki DE; Roditakis E; Tsigenopoulos CS; Vontas J; Tsagkarakou A
    BMC Genomics; 2015 Nov; 16():939. PubMed ID: 26573457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee.
    Claudianos C; Ranson H; Johnson RM; Biswas S; Schuler MA; Berenbaum MR; Feyereisen R; Oakeshott JG
    Insect Mol Biol; 2006 Oct; 15(5):615-36. PubMed ID: 17069637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GLUTATHIONE S-TRANSFERASE Genes IN THE RICE LEAFFOLDER, Cnaphalocrocis medinalis (LEPIDOPTERA: PYRALIDAE): IDENTIFICATION AND EXPRESSION PROFILES.
    Liu S; Rao XJ; Li MY; Feng MF; He MZ; Li SG
    Arch Insect Biochem Physiol; 2015 Sep; 90(1):1-13. PubMed ID: 25917811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.