BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26079795)

  • 21. Biochemical and structural investigations on phosphoribosylpyrophosphate synthetase from Mycobacterium smegmatis.
    Donini S; Garavaglia S; Ferraris DM; Miggiano R; Mori S; Shibayama K; Rizzi M
    PLoS One; 2017; 12(4):e0175815. PubMed ID: 28419153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of MshB from Mycobacterium tuberculosis, a deacetylase involved in mycothiol biosynthesis.
    McCarthy AA; Peterson NA; Knijff R; Baker EN
    J Mol Biol; 2004 Jan; 335(4):1131-41. PubMed ID: 14698305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro reconstitution of Mycobacterial ergothioneine biosynthesis.
    Seebeck FP
    J Am Chem Soc; 2010 May; 132(19):6632-3. PubMed ID: 20420449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase.
    Mandrich L; Manco G
    Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of N and C-terminal tails in DNA binding and assembly in Dps: structural studies of Mycobacterium smegmatis Dps deletion mutants.
    Roy S; Saraswathi R; Gupta S; Sekar K; Chatterji D; Vijayan M
    J Mol Biol; 2007 Jul; 370(4):752-67. PubMed ID: 17543333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organic hydroperoxide resistance protein and ergothioneine compensate for loss of mycothiol in Mycobacterium smegmatis mutants.
    Ta P; Buchmeier N; Newton GL; Rawat M; Fahey RC
    J Bacteriol; 2011 Apr; 193(8):1981-90. PubMed ID: 21335456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Production of Ergothioneine in
    Kamide T; Takusagawa S; Tanaka N; Ogasawara Y; Kawano Y; Ohtsu I; Satoh Y; Dairi T
    J Agric Food Chem; 2020 Jun; 68(23):6390-6394. PubMed ID: 32436380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of dihydropyrimidinase from Sinorhizobium meliloti CECT4114: new features in an amidohydrolase family member.
    Martínez-Rodríguez S; Martínez-Gómez AI; Clemente-Jiménez JM; Rodríguez-Vico F; García-Ruíz JM; Las Heras-Vázquez FJ; Gavira JA
    J Struct Biol; 2010 Feb; 169(2):200-8. PubMed ID: 19895890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism.
    Irani S; Naowarojna N; Tang Y; Kathuria KR; Wang S; Dhembi A; Lee N; Yan W; Lyu H; Costello CE; Liu P; Zhang YJ
    Cell Chem Biol; 2018 May; 25(5):519-529.e4. PubMed ID: 29503207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The catalytic mechanism of sulfoxide synthases.
    Stampfli AR; Seebeck FP
    Curr Opin Chem Biol; 2020 Dec; 59():111-118. PubMed ID: 32726707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from
    Beliaeva MA; Seebeck FP
    JACS Au; 2022 Sep; 2(9):2098-2107. PubMed ID: 36186560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation and characterization of thiol-deficient Mycobacterium tuberculosis mutants.
    Sao Emani C; Williams MJ; Van Helden PD; Taylor MJC; Carolis C; Wiid IJ; Baker B
    Sci Data; 2018 Sep; 5():180184. PubMed ID: 30251996
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Beliaeva MA; Leisinger F; Seebeck FP
    ACS Chem Biol; 2021 Feb; 16(2):397-403. PubMed ID: 33544568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling and molecular dynamics of glutamine transaminase K/cysteine conjugate beta-lyase.
    Venhorst J; ter Laak AM; Meijer M; van de Wetering I; Commandeur JN; Rooseboom M; Vermeulen NP
    J Mol Graph Model; 2003 Sep; 22(1):55-70. PubMed ID: 12798391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis--an enzyme which inactivates the anti-tubercular drug, isoniazid.
    Sandy J; Mushtaq A; Kawamura A; Sinclair J; Sim E; Noble M
    J Mol Biol; 2002 May; 318(4):1071-83. PubMed ID: 12054803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical and functional interactions between 3-methyladenine DNA glycosylase and topoisomerase I in mycobacteria.
    Yang Q; Huang F; Hu L; He ZG
    Biochemistry (Mosc); 2012 Apr; 77(4):378-87. PubMed ID: 22809157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo.
    Imkamp F; Rosenberger T; Striebel F; Keller PM; Amstutz B; Sander P; Weber-Ban E
    Mol Microbiol; 2010 Feb; 75(3):744-54. PubMed ID: 20025664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel trehalase from Mycobacterium smegmatis - purification, properties, requirements.
    Carroll JD; Pastuszak I; Edavana VK; Pan YT; Elbein AD
    FEBS J; 2007 Apr; 274(7):1701-14. PubMed ID: 17319935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The complex evolutionary history of sulfoxide synthase in ovothiol biosynthesis.
    Gerdol M; Sollitto M; Pallavicini A; Castellano I
    Proc Biol Sci; 2019 Dec; 286(1916):20191812. PubMed ID: 31771466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three consecutive arginines are important for the mycobacterial peptide deformylase enzyme activity.
    Saxena R; Kanudia P; Datt M; Dar HH; Karthikeyan S; Singh B; Chakraborti PK
    J Biol Chem; 2008 Aug; 283(35):23754-64. PubMed ID: 18574247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.