These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2607984)

  • 1. Phosphorus-31 nuclear magnetic resonance of enzyme complexes: bound ligand structure, dynamics, and environment.
    Gorenstein DG
    Methods Enzymol; 1989; 177():295-316. PubMed ID: 2607984
    [No Abstract]   [Full Text] [Related]  

  • 2. Catalytic contributions from remote regions of enzyme structure.
    Lee J; Goodey NM
    Chem Rev; 2011 Dec; 111(12):7595-624. PubMed ID: 21923192
    [No Abstract]   [Full Text] [Related]  

  • 3. Dynamics of the native and the ligand-bound structures of eosinophil cationic protein: network of hydrogen bonds at the catalytic site.
    Sanjeev BS; Vishveshwara S
    J Biomol Struct Dyn; 2005 Jun; 22(6):657-72. PubMed ID: 15842171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer modeling and molecular dynamics simulations of ligand bound complexes of bovine angiogenin: dinucleotide topology at the active site of RNase a family proteins.
    Madhusudhan MS; Sanjeev BS; Vishveshwara S
    Proteins; 2001 Oct; 45(1):30-9. PubMed ID: 11536357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conformational study of nucleic acid phosphate ester bonds using phosphorus-31 nuclear magnetic resonance.
    Haasnoot CA; Altona C
    Nucleic Acids Res; 1979 Mar; 6(3):1135-49. PubMed ID: 440971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To stabilize a transition state.
    Boger J; Knowles JR
    Ciba Found Symp; 1977; (60):225-42. PubMed ID: 252453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance methods for studying protein-ligand complexes.
    Petros AM; Fesik SW
    Methods Enzymol; 1994; 239():717-39. PubMed ID: 7530321
    [No Abstract]   [Full Text] [Related]  

  • 8. Temperature dependence of the backbone dynamics of ribonuclease A in the ground state and bound to the inhibitor 5'-phosphothymidine (3'-5')pyrophosphate adenosine 3'-phosphate.
    Kovrigin EL; Cole R; Loria JP
    Biochemistry; 2003 May; 42(18):5279-91. PubMed ID: 12731869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand conformations and ligand-enzyme interactions as studied by the nuclear Overhauser effect.
    Rosevear PR; Mildvan AS
    Methods Enzymol; 1989; 177():333-58. PubMed ID: 2607987
    [No Abstract]   [Full Text] [Related]  

  • 10. An NMR perspective on enzyme dynamics.
    Boehr DD; Dyson HJ; Wright PE
    Chem Rev; 2006 Aug; 106(8):3055-79. PubMed ID: 16895318
    [No Abstract]   [Full Text] [Related]  

  • 11. Ligand-protein interactions via nuclear magnetic resonance of quadrupolar nuclei.
    Sanders CR; Tsai MD
    Methods Enzymol; 1989; 177():317-33. PubMed ID: 2607986
    [No Abstract]   [Full Text] [Related]  

  • 12. Propidium binding to a ribonuclease-DNA complex: X-ray and fluorescence studies.
    McGrath M; Cascio D; Williams R; Johnson D; Greene M; McPherson A
    Mol Pharmacol; 1987 Nov; 32(5):600-5. PubMed ID: 3683365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The solution structure and dynamics of human pancreatic ribonuclease determined by NMR spectroscopy provide insight into its remarkable biological activities and inhibition.
    Kövér KE; Bruix M; Santoro J; Batta G; Laurents DV; Rico M
    J Mol Biol; 2008 Jun; 379(5):953-65. PubMed ID: 18495155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of quinomycin antibiotic UK-65,662 to DNA: 1H-n.m.r. studies of drug-induced changes in DNA conformation in complexes with d(ACGT)2 and d(GACGTC)2.
    Searle MS
    Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):967-79. PubMed ID: 7818504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P-CP-MAS NMR studies on TPP+ bound to the ion-coupled multidrug transport protein EmrE.
    Glaubitz C; Gröger A; Gottschalk K; Spooner P; Watts A; Schuldiner S; Kessler H
    FEBS Lett; 2000 Sep; 480(2-3):127-31. PubMed ID: 11034313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribonuclease A: carbon-13 nuclear magnetic resonance assignments, binding sites, and conformational flexibility.
    Howarth OW; Lian LY
    Biochemistry; 1984 Jul; 23(15):3515-21. PubMed ID: 6466650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of high resolution nuclear magnetic resonance to biological systems.
    Campbell ID; Dobson CM
    Methods Biochem Anal; 1979; 25():1-133. PubMed ID: 34772
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphorus-31 and fluorine-19 nuclear magnetic resonance of gene 5 protein-oligonucleotide complexes.
    O'Connor TP; Coleman JE
    Biochemistry; 1982 Mar; 21(5):848-54. PubMed ID: 6978734
    [No Abstract]   [Full Text] [Related]  

  • 19. Conformational dynamics and thermodynamics of protein-ligand binding studied by NMR relaxation.
    Akke M
    Biochem Soc Trans; 2012 Apr; 40(2):419-23. PubMed ID: 22435823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme specificity: base recognition and hydrolysis of RNA by ribonuclease A.
    Borkakoti N
    FEBS Lett; 1983 Oct; 162(2):367-73. PubMed ID: 6195018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.