These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26080048)

  • 1. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro.
    Castro-Roa D; Zenkin N
    Methods; 2015 Sep; 86():51-9. PubMed ID: 26080048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architecture of a transcribing-translating expressome.
    Kohler R; Mooney RA; Mills DJ; Landick R; Cramer P
    Science; 2017 Apr; 356(6334):194-197. PubMed ID: 28408604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for the assembly and analysis of in vitro transcription-coupled-to-translation systems.
    Castro-Roa D; Zenkin N
    Methods Mol Biol; 2015; 1276():81-99. PubMed ID: 25665559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A translational riboswitch coordinates nascent transcription-translation coupling.
    Chatterjee S; Chauvier A; Dandpat SS; Artsimovitch I; Walter NG
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosome reactivates transcription by physically pushing RNA polymerase out of transcription arrest.
    Stevenson-Jones F; Woodgate J; Castro-Roa D; Zenkin N
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8462-8467. PubMed ID: 32238560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro experimental system for analysis of transcription-translation coupling.
    Castro-Roa D; Zenkin N
    Nucleic Acids Res; 2012 Mar; 40(6):e45. PubMed ID: 22210860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measures of single- versus multiple-round translation argue against a mechanism to ensure coupling of transcription and translation.
    Chen M; Fredrick K
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10774-10779. PubMed ID: 30275301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic dynamics and ribosome-RNAP interactions in transcription-translation coupling.
    Li X; Chou T
    Biophys J; 2023 Jan; 122(1):254-266. PubMed ID: 36199250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperation between translating ribosomes and RNA polymerase in transcription elongation.
    Proshkin S; Rahmouni AR; Mironov A; Nudler E
    Science; 2010 Apr; 328(5977):504-8. PubMed ID: 20413502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of RNA polymerase bound to ribosomal 30S subunit.
    Demo G; Rasouly A; Vasilyev N; Svetlov V; Loveland AB; Diaz-Avalos R; Grigorieff N; Nudler E; Korostelev AA
    Elife; 2017 Oct; 6():. PubMed ID: 29027901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two Old Dogs, One New Trick: A Review of RNA Polymerase and Ribosome Interactions during Transcription-Translation Coupling.
    Conn AB; Diggs S; Tam TK; Blaha GM
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of transcription-translation coupling.
    Wang C; Molodtsov V; Firlar E; Kaelber JT; Blaha G; Su M; Ebright RH
    Science; 2020 Sep; 369(6509):1359-1365. PubMed ID: 32820061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery.
    Wee LM; Tong AB; Florez Ariza AJ; Cañari-Chumpitaz C; Grob P; Nogales E; Bustamante CJ
    Cell; 2023 Mar; 186(6):1244-1262.e34. PubMed ID: 36931247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator.
    Li R; Zhang Q; Li J; Shi H
    Nucleic Acids Res; 2016 Apr; 44(6):2554-63. PubMed ID: 26602687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of transcription-translation coupling and collision in bacteria.
    Webster MW; Takacs M; Zhu C; Vidmar V; Eduljee A; Abdelkareem M; Weixlbaumer A
    Science; 2020 Sep; 369(6509):1355-1359. PubMed ID: 32820062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal gene expression in Escherichia coli.
    An W; Chin JW
    Methods Enzymol; 2011; 497():115-34. PubMed ID: 21601084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NusG-mediated Coupling of Transcription and Translation Enhances Gene Expression by Suppressing RNA Polymerase Backtracking.
    Bailey EJ; Gottesman ME; Gonzalez RL
    J Mol Biol; 2022 Jan; 434(2):167330. PubMed ID: 34710399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A code for transcription elongation speed.
    Cohen E; Zafrir Z; Tuller T
    RNA Biol; 2018 Jan; 15(1):81-94. PubMed ID: 29165040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA polymerase and the ribosome: the close relationship.
    McGary K; Nudler E
    Curr Opin Microbiol; 2013 Apr; 16(2):112-7. PubMed ID: 23433801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription and translation contribute to gene locus relocation to the nucleoid periphery in E. coli.
    Yang S; Kim S; Kim DK; Jeon An H; Bae Son J; Hedén Gynnå A; Ki Lee N
    Nat Commun; 2019 Nov; 10(1):5131. PubMed ID: 31719538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.