These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 26080079)
1. Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain. Moore MD; Escudero-Abarca BI; Suh SH; Jaykus LA J Biotechnol; 2015 Sep; 209():41-9. PubMed ID: 26080079 [TBL] [Abstract][Full Text] [Related]
2. Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. Escudero-Abarca BI; Suh SH; Moore MD; Dwivedi HP; Jaykus LA PLoS One; 2014; 9(9):e106805. PubMed ID: 25192421 [TBL] [Abstract][Full Text] [Related]
3. Target Affinity and Structural Analysis for a Selection of Norovirus Aptamers. Schilling-Loeffler K; Rodriguez R; Williams-Woods J Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445583 [TBL] [Abstract][Full Text] [Related]
4. Development and evaluation of a novel in situ target-capture approach for aptamer selection of human noroviruses. Liu D; Zhang Z; Yin Y; Jia F; Wu Q; Tian P; Wang D Talanta; 2019 Feb; 193():199-205. PubMed ID: 30368291 [TBL] [Abstract][Full Text] [Related]
5. Selection of a DNA aptamer against norovirus capsid protein VP1. Beier R; Pahlke C; Quenzel P; Henseleit A; Boschke E; Cuniberti G; Labudde D FEMS Microbiol Lett; 2014 Feb; 351(2):162-9. PubMed ID: 24372686 [TBL] [Abstract][Full Text] [Related]
6. An Enzyme-Linked Aptamer Sorbent Assay to Evaluate Aptamer Binding. Moore MD; Escudero-Abarca BI; Jaykus LA Methods Mol Biol; 2017; 1575():291-302. PubMed ID: 28255888 [TBL] [Abstract][Full Text] [Related]
7. The influence of food matrices on aptamer selection by SELEX (systematic evolution of ligands by exponential enrichment) targeting the norovirus P-Domain. Schilling KB; DeGrasse J; Woods JW Food Chem; 2018 Aug; 258():129-136. PubMed ID: 29655714 [TBL] [Abstract][Full Text] [Related]
8. Molecular epidemiology of norovirus in Singapore, 2004-2011. Lim KL; Eden JS; Oon LL; White PA J Med Virol; 2013 Oct; 85(10):1842-51. PubMed ID: 23868077 [TBL] [Abstract][Full Text] [Related]
9. Biological and immunological characterization of norovirus major capsid proteins from three different genotypes. Huo Y; Wan X; Ling T; Shen S Microb Pathog; 2016 Jan; 90():78-83. PubMed ID: 26616166 [TBL] [Abstract][Full Text] [Related]
10. Characterization of virus-like particles derived from a GII.3 norovirus strain distantly related with current dominating strains. Huo Y; Chen X; Zheng L; Huo J; Zhang S; Wang M; Wang Y Virus Genes; 2016 Oct; 52(5):613-9. PubMed ID: 27234312 [TBL] [Abstract][Full Text] [Related]
12. Prevalence and genetic diversity of norovirus in outpatient children with acute diarrhea in Shanghai, China. Zeng M; Gong Z; Zhang Y; Zhu Q; Wang X Jpn J Infect Dis; 2011; 64(5):417-22. PubMed ID: 21937824 [TBL] [Abstract][Full Text] [Related]
13. Expression and antigenicity of virus-like particles of norovirus and their application for detection of noroviruses in stool samples. Kamata K; Shinozaki K; Okada M; Seto Y; Kobayashi S; Sakae K; Oseto M; Natori K; Shirato-Horikoshi H; Katayama K; Tanaka T; Takeda N; Taniguchi K J Med Virol; 2005 May; 76(1):129-36. PubMed ID: 15778983 [TBL] [Abstract][Full Text] [Related]
14. Self-assembly of the recombinant capsid protein of a swine norovirus into virus-like particles and evaluation of monoclonal antibodies cross-reactive with a human strain from genogroup II. Almanza H; Cubillos C; Angulo I; Mateos F; Castón JR; van der Poel WH; Vinje J; Bárcena J; Mena I J Clin Microbiol; 2008 Dec; 46(12):3971-9. PubMed ID: 18842943 [TBL] [Abstract][Full Text] [Related]
15. Identification and characterization of antibody-binding epitopes on the norovirus GII.3 capsid. Mahar JE; Donker NC; Bok K; Talbo GH; Green KY; Kirkwood CD J Virol; 2014 Feb; 88(4):1942-52. PubMed ID: 24284328 [TBL] [Abstract][Full Text] [Related]
16. A new variant of Norovirus GII.4/2007 and inter-genotype recombinant strains of NVGII causing acute watery diarrhoea among children in Kolkata, India. Nayak MK; Chatterjee D; Nataraju SM; Pativada M; Mitra U; Chatterjee MK; Saha TK; Sarkar U; Krishnan T J Clin Virol; 2009 Jul; 45(3):223-9. PubMed ID: 19464942 [TBL] [Abstract][Full Text] [Related]
17. Chimeric GII.3/GII.6 norovirus capsid (VP1) proteins: characterization by electron microscopy, trypsin sensitivity and binding to histo-blood group antigens. Ma S; Zheng L; Liu J; Wang W; Ma J; Cheng X; Ge L; Wang M; Huo Y; Shen S Arch Virol; 2018 Dec; 163(12):3265-3273. PubMed ID: 30143876 [TBL] [Abstract][Full Text] [Related]
18. Novel intergenotype human norovirus recombinant GII.16/GII.3 in Bangladesh. Nahar S; Afrad MH; Matthijnssens J; Rahman MZ; Momtaz Z; Yasmin R; Jubair M; Faruque AS; Choudhuri MS; Azim T; Rahman M Infect Genet Evol; 2013 Dec; 20():325-9. PubMed ID: 24080167 [TBL] [Abstract][Full Text] [Related]
19. Chimeric VLPs with GII.3 P2 domain in a backbone of GII.4 VP1 confers novel HBGA binding ability. Huo Y; Wang W; Ling T; Wan X; Ding L; Shen S; Huo J; Zhang S; Wang M; Wang Y; Liu Y Virus Res; 2016 Sep; 224():1-5. PubMed ID: 27521750 [TBL] [Abstract][Full Text] [Related]
20. Clinical relevance and genotypes of circulating noroviruses in northern Taiwan, 2006-2011. Tsai CN; Lin CY; Lin CW; Shih KC; Chiu CH; Chen SY J Med Virol; 2014 Feb; 86(2):335-46. PubMed ID: 24009100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]