BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 26080079)

  • 1. Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain.
    Moore MD; Escudero-Abarca BI; Suh SH; Jaykus LA
    J Biotechnol; 2015 Sep; 209():41-9. PubMed ID: 26080079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains.
    Escudero-Abarca BI; Suh SH; Moore MD; Dwivedi HP; Jaykus LA
    PLoS One; 2014; 9(9):e106805. PubMed ID: 25192421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target Affinity and Structural Analysis for a Selection of Norovirus Aptamers.
    Schilling-Loeffler K; Rodriguez R; Williams-Woods J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and evaluation of a novel in situ target-capture approach for aptamer selection of human noroviruses.
    Liu D; Zhang Z; Yin Y; Jia F; Wu Q; Tian P; Wang D
    Talanta; 2019 Feb; 193():199-205. PubMed ID: 30368291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of a DNA aptamer against norovirus capsid protein VP1.
    Beier R; Pahlke C; Quenzel P; Henseleit A; Boschke E; Cuniberti G; Labudde D
    FEMS Microbiol Lett; 2014 Feb; 351(2):162-9. PubMed ID: 24372686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Enzyme-Linked Aptamer Sorbent Assay to Evaluate Aptamer Binding.
    Moore MD; Escudero-Abarca BI; Jaykus LA
    Methods Mol Biol; 2017; 1575():291-302. PubMed ID: 28255888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of food matrices on aptamer selection by SELEX (systematic evolution of ligands by exponential enrichment) targeting the norovirus P-Domain.
    Schilling KB; DeGrasse J; Woods JW
    Food Chem; 2018 Aug; 258():129-136. PubMed ID: 29655714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular epidemiology of norovirus in Singapore, 2004-2011.
    Lim KL; Eden JS; Oon LL; White PA
    J Med Virol; 2013 Oct; 85(10):1842-51. PubMed ID: 23868077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological and immunological characterization of norovirus major capsid proteins from three different genotypes.
    Huo Y; Wan X; Ling T; Shen S
    Microb Pathog; 2016 Jan; 90():78-83. PubMed ID: 26616166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of virus-like particles derived from a GII.3 norovirus strain distantly related with current dominating strains.
    Huo Y; Chen X; Zheng L; Huo J; Zhang S; Wang M; Wang Y
    Virus Genes; 2016 Oct; 52(5):613-9. PubMed ID: 27234312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping broadly reactive norovirus genogroup I and II monoclonal antibodies.
    Crawford SE; Ajami N; Parker TD; Kitamoto N; Natori K; Takeda N; Tanaka T; Kou B; Atmar RL; Estes MK
    Clin Vaccine Immunol; 2015 Feb; 22(2):168-77. PubMed ID: 25428246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence and genetic diversity of norovirus in outpatient children with acute diarrhea in Shanghai, China.
    Zeng M; Gong Z; Zhang Y; Zhu Q; Wang X
    Jpn J Infect Dis; 2011; 64(5):417-22. PubMed ID: 21937824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and antigenicity of virus-like particles of norovirus and their application for detection of noroviruses in stool samples.
    Kamata K; Shinozaki K; Okada M; Seto Y; Kobayashi S; Sakae K; Oseto M; Natori K; Shirato-Horikoshi H; Katayama K; Tanaka T; Takeda N; Taniguchi K
    J Med Virol; 2005 May; 76(1):129-36. PubMed ID: 15778983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of the recombinant capsid protein of a swine norovirus into virus-like particles and evaluation of monoclonal antibodies cross-reactive with a human strain from genogroup II.
    Almanza H; Cubillos C; Angulo I; Mateos F; Castón JR; van der Poel WH; Vinje J; Bárcena J; Mena I
    J Clin Microbiol; 2008 Dec; 46(12):3971-9. PubMed ID: 18842943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of antibody-binding epitopes on the norovirus GII.3 capsid.
    Mahar JE; Donker NC; Bok K; Talbo GH; Green KY; Kirkwood CD
    J Virol; 2014 Feb; 88(4):1942-52. PubMed ID: 24284328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new variant of Norovirus GII.4/2007 and inter-genotype recombinant strains of NVGII causing acute watery diarrhoea among children in Kolkata, India.
    Nayak MK; Chatterjee D; Nataraju SM; Pativada M; Mitra U; Chatterjee MK; Saha TK; Sarkar U; Krishnan T
    J Clin Virol; 2009 Jul; 45(3):223-9. PubMed ID: 19464942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric GII.3/GII.6 norovirus capsid (VP1) proteins: characterization by electron microscopy, trypsin sensitivity and binding to histo-blood group antigens.
    Ma S; Zheng L; Liu J; Wang W; Ma J; Cheng X; Ge L; Wang M; Huo Y; Shen S
    Arch Virol; 2018 Dec; 163(12):3265-3273. PubMed ID: 30143876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel intergenotype human norovirus recombinant GII.16/GII.3 in Bangladesh.
    Nahar S; Afrad MH; Matthijnssens J; Rahman MZ; Momtaz Z; Yasmin R; Jubair M; Faruque AS; Choudhuri MS; Azim T; Rahman M
    Infect Genet Evol; 2013 Dec; 20():325-9. PubMed ID: 24080167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimeric VLPs with GII.3 P2 domain in a backbone of GII.4 VP1 confers novel HBGA binding ability.
    Huo Y; Wang W; Ling T; Wan X; Ding L; Shen S; Huo J; Zhang S; Wang M; Wang Y; Liu Y
    Virus Res; 2016 Sep; 224():1-5. PubMed ID: 27521750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical relevance and genotypes of circulating noroviruses in northern Taiwan, 2006-2011.
    Tsai CN; Lin CY; Lin CW; Shih KC; Chiu CH; Chen SY
    J Med Virol; 2014 Feb; 86(2):335-46. PubMed ID: 24009100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.