These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 26080101)

  • 1. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.
    Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M
    Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.
    Chen T; Zhang J; Wu J
    Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis of microalgae residues--A kinetic study.
    Bui HH; Tran KQ; Chen WH
    Bioresour Technol; 2016 Jan; 199():362-366. PubMed ID: 26342785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis.
    Ounas A; Aboulkas A; El Harfi K; Bacaoui A; Yaacoubi A
    Bioresour Technol; 2011 Dec; 102(24):11234-8. PubMed ID: 22004591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK; Gu S; Jin B; Fang MX
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis.
    Cai J; Wu W; Liu R
    Bioresour Technol; 2013 Mar; 132():423-6. PubMed ID: 23280091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z; Wang S; Zhao J; Chen L; Meng H
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis.
    Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q
    Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal degradations of wood biofuels, coals and hydrolysis lignin from the Russian Federation: Experiments and modeling.
    Popova E; Chernov A; Maryandyshev P; Brillard A; Kehrli D; Trouvé G; Lyubov V; Brilhac JF
    Bioresour Technol; 2016 Oct; 218():1046-54. PubMed ID: 27455128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components.
    Shi X; Wang J
    Bioresour Technol; 2014 Oct; 170():262-269. PubMed ID: 25151069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of kinetic parameters of Phlomis bovei de Noé using thermogravimetric analysis.
    Yahiaoui M; Hadoun H; Toumert I; Hassani A
    Bioresour Technol; 2015 Nov; 196():441-7. PubMed ID: 26276095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis Characteristics and Reaction Mechanisms of Pine Needles.
    Zhang D; Pan R; Chen R; Xu X
    Appl Biochem Biotechnol; 2019 Dec; 189(4):1056-1083. PubMed ID: 31165393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.
    Wang X; Hu M; Hu W; Chen Z; Liu S; Hu Z; Xiao B
    Bioresour Technol; 2016 Nov; 219():510-520. PubMed ID: 27521788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer.
    Wu K; Liu J; Wu Y; Chen Y; Li Q; Xiao X; Yang M
    Bioresour Technol; 2014 Jul; 163():18-25. PubMed ID: 24768943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of poly(vinyl chloride) presence on the thermochemical process of lignocellulosic biomass in CO₂ by thermogravimetric analysis.
    He Y; Ma X; Zeng G
    Bioresour Technol; 2015 Feb; 177():346-54. PubMed ID: 25506821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic performance of potassium in lignocellulosic biomass pyrolysis based on an optimized three-parallel distributed activation energy model.
    Wang C; Li L; Zeng Z; Xu X; Ma X; Chen R; Su C
    Bioresour Technol; 2019 Jun; 281():412-420. PubMed ID: 30849697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum.
    Huang W; Gong F; Fan M; Zhai Q; Hong C; Li Q
    Bioresour Technol; 2012 Oct; 121():248-55. PubMed ID: 22858493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.