These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26080356)

  • 21. Calculation of binding free energies.
    Gapsys V; Michielssens S; Peters JH; de Groot BL; Leonov H
    Methods Mol Biol; 2015; 1215():173-209. PubMed ID: 25330964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.
    Boulougouris GC
    J Comput Chem; 2014 May; 35(13):1024-35. PubMed ID: 24664967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biasing the center of charge in molecular dynamics simulations with empirical valence bond models: free energetics of an excess proton in a water droplet.
    Köfinger J; Dellago C
    J Phys Chem B; 2008 Feb; 112(8):2349-56. PubMed ID: 18247589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ab initio calculations of free energy barriers for chemical reactions in solution: proton transfer in [FHF]-.
    Muller RP; Warshel A
    Pac Symp Biocomput; 1996; ():524-38. PubMed ID: 9390256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer simulation studies of the fidelity of DNA polymerases.
    Florián J; Goodman MF; Warshel A
    Biopolymers; 2003 Mar; 68(3):286-99. PubMed ID: 12601790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minimum free energy pathways and free energy profiles for conformational transitions based on atomistic molecular dynamics simulations.
    van der Vaart A; Karplus M
    J Chem Phys; 2007 Apr; 126(16):164106. PubMed ID: 17477588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? An evaluation of the linear interaction energy (LIE) method.
    Stjernschantz E; Marelius J; Medina C; Jacobsson M; Vermeulen NP; Oostenbrink C
    J Chem Inf Model; 2006; 46(5):1972-83. PubMed ID: 16995728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Grid-based steered thermodynamic integration accelerates the calculation of binding free energies.
    Fowler PW; Jha S; Coveney PV
    Philos Trans A Math Phys Eng Sci; 2005 Aug; 363(1833):1999-2015. PubMed ID: 16099763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Empirical Valence Bond Simulations with GROMACS.
    Oanca G; van der Ent F; Åqvist J
    J Chem Theory Comput; 2023 Sep; 19(17):6037-6045. PubMed ID: 37623818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions.
    Hori K; Yamaguchi T; Uezu K; Sumimoto M
    J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome.
    Ge X; Roux B
    J Phys Chem B; 2010 Jul; 114(29):9525-39. PubMed ID: 20608691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular simulation of conformational transitions in biomolecules using a combination of structure-based potential and empirical valence bond theory.
    de Marco G; Várnai P
    Phys Chem Chem Phys; 2009 Dec; 11(45):10694-700. PubMed ID: 20145813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH
    J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the choice of a reference state for one-step perturbation calculations between polar and nonpolar molecules in a polar environment.
    Lin Z; van Gunsteren WF
    J Comput Chem; 2013 Feb; 34(5):387-93. PubMed ID: 23081811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accurate Computation of Thermodynamic Activation Parameters in the Chorismate Mutase Reaction from Empirical Valence Bond Simulations.
    Wilkins RS; Lund BA; Isaksen GV; Åqvist J; Brandsdal BO
    J Chem Theory Comput; 2024 Jan; 20(1):451-458. PubMed ID: 38112329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping.
    Xiang Y; Warshel A
    J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein-ligand binding free energies from exhaustive docking.
    Purisima EO; Hogues H
    J Phys Chem B; 2012 Jun; 116(23):6872-9. PubMed ID: 22432509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A large-scale test of free-energy simulation estimates of protein-ligand binding affinities.
    Mikulskis P; Genheden S; Ryde U
    J Chem Inf Model; 2014 Oct; 54(10):2794-806. PubMed ID: 25264937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comment on "A stationary-wave model of enzyme catalysis" by Carlo Canepa.
    Lonsdale R; Harvey JN; Manby FR; Mulholland AJ
    J Comput Chem; 2011 Jan; 32(2):368-9; author reply 370-1. PubMed ID: 20652884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.