These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 26080356)
41. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Miyamoto S; Kollman PA Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190 [TBL] [Abstract][Full Text] [Related]
42. Calculation of the entropy and free energy by the hypothetical scanning Monte Carlo method: application to peptides. Cheluvaraja S; Meirovitch H J Chem Phys; 2005 Feb; 122(5):54903. PubMed ID: 15740349 [TBL] [Abstract][Full Text] [Related]
43. Entropy and Enzyme Catalysis. Åqvist J; Kazemi M; Isaksen GV; Brandsdal BO Acc Chem Res; 2017 Feb; 50(2):199-207. PubMed ID: 28169522 [TBL] [Abstract][Full Text] [Related]
44. Free energy profiles of amino acid side chain analogs near water-vapor interface obtained via MD simulations. Shaytan AK; Ivanov VA; Shaitan KV; Khokhlov AR J Comput Chem; 2010 Jan; 31(1):204-16. PubMed ID: 19421988 [TBL] [Abstract][Full Text] [Related]
45. The energy gap as a universal reaction coordinate for the simulation of chemical reactions. Mones L; Kulhánek P; Simon I; Laio A; Fuxreiter M J Phys Chem B; 2009 Jun; 113(22):7867-73. PubMed ID: 19432459 [TBL] [Abstract][Full Text] [Related]
46. A multistate empirical valence bond description of protonatable amino acids. Maupin CM; Wong KF; Soudackov AV; Kim S; Voth GA J Phys Chem A; 2006 Jan; 110(2):631-9. PubMed ID: 16405335 [TBL] [Abstract][Full Text] [Related]
47. Conformational state-specific free energy differences by one-step perturbation: protein secondary structure preferences of the GROMOS 43A1 and 53A6 force fields. Lin Z; Van Gunsteren WF; Liu H J Comput Chem; 2011 Jul; 32(10):2290-7. PubMed ID: 21541965 [TBL] [Abstract][Full Text] [Related]
48. Enzyme catalysis by entropy without Circe effect. Kazemi M; Himo F; Åqvist J Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2406-11. PubMed ID: 26755610 [TBL] [Abstract][Full Text] [Related]
49. Computational analysis of binding of P1 variants to trypsin. Brandsdal BO; Aqvist J; Smalås AO Protein Sci; 2001 Aug; 10(8):1584-95. PubMed ID: 11468355 [TBL] [Abstract][Full Text] [Related]
50. Free energy calculations show that acidic P1 variants undergo large pKa shifts upon binding to trypsin. Brandsdal BO; Smalås AO; Aqvist J Proteins; 2006 Aug; 64(3):740-8. PubMed ID: 16752417 [TBL] [Abstract][Full Text] [Related]
51. Exploring biomolecular dynamics and interactions using advanced sampling methods. Luitz M; Bomblies R; Ostermeir K; Zacharias M J Phys Condens Matter; 2015 Aug; 27(32):323101. PubMed ID: 26194626 [TBL] [Abstract][Full Text] [Related]
52. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots. Kazemi M; Åqvist J Nat Commun; 2015 Jun; 6():7293. PubMed ID: 26028237 [TBL] [Abstract][Full Text] [Related]
53. Efficient free energy calculations on small molecule host-guest systems - a combined linear interaction energy/one-step perturbation approach. Oostenbrink C J Comput Chem; 2009 Jan; 30(2):212-21. PubMed ID: 18785242 [TBL] [Abstract][Full Text] [Related]
54. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations. Ramadoss V; Dehez F; Chipot C J Chem Inf Model; 2016 Jun; 56(6):1122-6. PubMed ID: 27214306 [TBL] [Abstract][Full Text] [Related]
55. Non-arrhenius behavior in the unfolding of a short, hydrophobic alpha-helix. Complementarity of molecular dynamics and lattice model simulations. Collet O; Chipot C J Am Chem Soc; 2003 May; 125(21):6573-80. PubMed ID: 12785798 [TBL] [Abstract][Full Text] [Related]
56. Peptide recognition by the T cell receptor: comparison of binding free energies from thermodynamic integration, Poisson-Boltzmann and linear interaction energy approximations. Wan S; Coveney PV; Flower DR Philos Trans A Math Phys Eng Sci; 2005 Aug; 363(1833):2037-53. PubMed ID: 16099765 [TBL] [Abstract][Full Text] [Related]
57. Monte Carlo and theoretical calculations of the first four perturbation coefficients in the high temperature series expansion of the free energy for discrete and core-softened potential models. Zhou S; Solana JR J Chem Phys; 2013 Jun; 138(24):244115. PubMed ID: 23822235 [TBL] [Abstract][Full Text] [Related]
58. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation. Takemura K; Guo H; Sakuraba S; Matubayasi N; Kitao A J Chem Phys; 2012 Dec; 137(21):215105. PubMed ID: 23231264 [TBL] [Abstract][Full Text] [Related]
59. Free energy perturbation study of water dimer dissociation kinetics. Ming Y; Lai G; Tong C; Wood RH; Doren DJ J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604 [TBL] [Abstract][Full Text] [Related]