These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

743 related articles for article (PubMed ID: 26080477)

  • 1. CONTROL OF VIRAL DISEASES TRANSMITTED IN A PERSISTENT MANNER BY THRIPS IN PEPPER (TOMATO SPOTTED WILT VIRUS).
    Fanigliulo A; Viggiano A; Gualco A; Crescenzi A
    Commun Agric Appl Biol Sci; 2014; 79(3):433-7. PubMed ID: 26080477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Thrips Density, Mode of Inoculation, and Plant Age on Tomato Spotted Wilt Virus Transmission in Peanut Plants.
    Shrestha A; Sundaraj S; Culbreath AK; Riley DG; Abney MR; Srinivasan R
    Environ Entomol; 2015 Feb; 44(1):136-43. PubMed ID: 26308816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance breaking tomato spotted wilt virus isolates on resistant pepper varieties in Italy.
    Crescenzi A; Viggiano A; Fanigliulo A
    Commun Agric Appl Biol Sci; 2013; 78(3):609-12. PubMed ID: 25151838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of Frankliniella occidentalis (Thysanoptera: Thripidae) by Tomato Spotted Wilt Virus (Tospovirus) Via the Host Plant Nutrients to Enhance Its Transmission and Spread.
    Shalileh S; Ogada PA; Moualeu DP; Poehling HM
    Environ Entomol; 2016 Oct; 45(5):1235-1242. PubMed ID: 27566527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virus-vectoring thrips regulate the excessive multiplication of tomato spotted wilt virus using their antiviral immune responses.
    Mandal E; Khan F; Kil EJ; Kim Y
    J Gen Virol; 2024 May; 105(5):. PubMed ID: 38717918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host plant resistance against tomato spotted wilt virus in peanut (Arachis hypogaea) and its impact on susceptibility to the virus, virus population genetics, and vector feeding behavior and survival.
    Sundaraj S; Srinivasan R; Culbreath AK; Riley DG; Pappu HR
    Phytopathology; 2014 Feb; 104(2):202-10. PubMed ID: 24025049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three decades of managing Tomato spotted wilt virus in peanut in southeastern United States.
    Srinivasan R; Abney MR; Culbreath AK; Kemerait RC; Tubbs RS; Monfort WS; Pappu HR
    Virus Res; 2017 Sep; 241():203-212. PubMed ID: 28549856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bell and banana pepper exhibit mature-plant resistance to tomato spotted wilt Tospovirus transmitted by Frankliniella fusca (Thysanoptera: Thripidae).
    Beaudoin AL; Kahn ND; Kennedy GG
    J Econ Entomol; 2009 Feb; 102(1):30-5. PubMed ID: 19253614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Winter weeds as inoculum sources of tomato spotted wilt virus and as reservoirs for its vector, Frankliniella fusca (Thysanoptera: Thripidae) in farmscapes of Georgia.
    Srinivasan R; Riley D; Diffie S; Shrestha A; Culbreath A
    Environ Entomol; 2014 Apr; 43(2):410-20. PubMed ID: 24612539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Novel Thrips Vector Proteins That Bind to the Viral Attachment Protein of the Plant Bunyavirus Tomato Spotted Wilt Virus.
    Badillo-Vargas IE; Chen Y; Martin KM; Rotenberg D; Whitfield AE
    J Virol; 2019 Nov; 93(21):. PubMed ID: 31413126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector.
    Schneweis DJ; Whitfield AE; Rotenberg D
    Virology; 2017 Jan; 500():226-237. PubMed ID: 27835811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Alternatives to Carbamate and Organophosphate Insecticides Against Thrips and Tomato Spotted Wilt Virus in Peanut Production.
    Marasigan K; Toews M; Kemerait R; Abney MR; Culbreath A; Srinivasan R
    J Econ Entomol; 2016 Apr; 109(2):544-57. PubMed ID: 26637534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflective mulch and acibenzolar-S-methyl treatments relative to thrips (Thysanoptera: Thripidae) and tomato spotted wilt virus incidence in tomato.
    Riley DG; Joseph SV; Srinivasan R
    J Econ Entomol; 2012 Aug; 105(4):1302-10. PubMed ID: 22928310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus.
    Abe H; Tomitaka Y; Shimoda T; Seo S; Sakurai T; Kugimiya S; Tsuda S; Kobayashi M
    Plant Cell Physiol; 2012 Jan; 53(1):204-12. PubMed ID: 22180600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second generation peanut genotypes resistant to thrips-transmitted tomato spotted wilt virus exhibit tolerance rather than true resistance and differentially affect thrips fitness.
    Shrestha A; Srinivasan R; Sundaraj S; Culbreath AK; Riley DG
    J Econ Entomol; 2013 Apr; 106(2):587-96. PubMed ID: 23786043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Alternatives to an Organophosphate Insecticide with Selected Cultural Practices: Effects on Thrips, Frankliniella fusca, and Incidence of Spotted Wilt in Peanut Farmscapes.
    Marasigan K; Toews M; Kemerait R; Abney MR; Culbreath A; Srinivasan R
    J Econ Entomol; 2018 May; 111(3):1030-1041. PubMed ID: 29635299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemiology of spotted wilt disease of peanut caused by Tomato spotted wilt virus in the southeastern U.S.
    Culbreath AK; Srinivasan R
    Virus Res; 2011 Aug; 159(2):101-9. PubMed ID: 21620508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virus diseases of peppers (Capsicum spp.) and their control.
    Kenyon L; Kumar S; Tsai WS; Hughes Jd
    Adv Virus Res; 2014; 90():297-354. PubMed ID: 25410105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in Tomato spotted wilt virus titer in Frankliniella occidentalis and its association with frequency of transmission.
    Rotenberg D; Krishna Kumar NK; Ullman DE; Montero-AstĂșa M; Willis DK; German TL; Whitfield AE
    Phytopathology; 2009 Apr; 99(4):404-10. PubMed ID: 19271982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the Effectiveness of Imidacloprid When Used to Suppress Transmission of Tomato spotted wilt orthotospovirus in Commercial Agriculture.
    Chappell TM; Kennedy GG
    J Econ Entomol; 2018 Sep; 111(5):2024-2031. PubMed ID: 29931344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.