These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26080755)

  • 21. How visual information influences dual-task driving and tracking.
    Broeker L; Haeger M; Bock O; Kretschmann B; Ewolds H; Künzell S; Raab M
    Exp Brain Res; 2020 Mar; 238(3):675-687. PubMed ID: 32036415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sitting infants alter the magnitude and structure of postural sway when performing a manual goal-directed task.
    Claxton LJ; Strasser JM; Leung EJ; Ryu JH; O'Brien KM
    Dev Psychobiol; 2014 Sep; 56(6):1416-22. PubMed ID: 24604626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-related differences in performance and stimulus processing in dual task situation.
    Hahn M; Wild-Wall N; Falkenstein M
    Brain Res; 2011 Sep; 1414():66-76. PubMed ID: 21871612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationships between dual-task related changes in stride velocity and stride time variability in healthy older adults.
    Dubost V; Kressig RW; Gonthier R; Herrmann FR; Aminian K; Najafi B; Beauchet O
    Hum Mov Sci; 2006 Jun; 25(3):372-82. PubMed ID: 16714067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of velocity and limb loading on the coordination between limb movements during walking.
    Donker SF; Daffertshofer A; Beek PJ
    J Mot Behav; 2005 May; 37(3):217-30. PubMed ID: 15883119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redirection of gaze and switching of attention during rapid stepping reactions evoked by unpredictable postural perturbation.
    Zettel JL; Holbeche A; McIlroy WE; Maki BE
    Exp Brain Res; 2005 Sep; 165(3):392-401. PubMed ID: 15883802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attention Is Required to Coordinate Reaching and Postural Stability during Upper Limb Movements Generated While Standing.
    Dierijck J; Kennefick M; Smirl J; Dalton BH; van Donkelaar P
    J Mot Behav; 2020; 52(1):79-88. PubMed ID: 30915916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural coupling between upper and lower limbs during recumbent stepping.
    Huang HJ; Ferris DP
    J Appl Physiol (1985); 2004 Oct; 97(4):1299-308. PubMed ID: 15180979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lower extremity control and dynamics during backward angular impulse generation in backward translating tasks.
    Mathiyakom W; McNitt-Gray JL; Wilcox R
    Exp Brain Res; 2006 Mar; 169(3):377-88. PubMed ID: 16273396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuronal Responses to a Postural Dual-Task With Differential Attentional Prioritizations: Compensatory Resource Allocation With Healthy Aging.
    Yu SH; Hwang IS; Huang CY
    J Gerontol B Psychol Sci Soc Sci; 2019 Oct; 74(8):1326-1334. PubMed ID: 29955844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explaining Upper or Lower Extremity Crossover Effects of Visuomotor Choice Reaction Time Training.
    Engeroff T; Giesche F; Niederer D; Gerten S; Wilke J; Vogt L; Banzer W
    Percept Mot Skills; 2019 Aug; 126(4):675-693. PubMed ID: 31039674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing and Analyzing In-Place Motor Tasks in Virtual Reality With Goal Functions.
    Carrera RM; Tao C; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2928-2938. PubMed ID: 39106130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Do we always prioritize balance when walking? Towards an integrated model of task prioritization.
    Yogev-Seligmann G; Hausdorff JM; Giladi N
    Mov Disord; 2012 May; 27(6):765-70. PubMed ID: 22419512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults.
    Beurskens R; Steinberg F; Antoniewicz F; Wolff W; Granacher U
    Neural Plast; 2016; 2016():8032180. PubMed ID: 27200192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attentional demands of perturbation evoked compensatory stepping responses: examining cognitive-motor interference to large magnitude forward perturbations.
    Patel PJ; Bhatt T
    J Mot Behav; 2015; 47(3):201-10. PubMed ID: 25559427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The division of visual attention affects the transition point from level walking to stair descent in healthy, active older adults.
    Telonio A; Blanchet S; Maganaris CN; Baltzopoulos V; Villeneuve S; McFadyen BJ
    Exp Gerontol; 2014 Feb; 50():26-33. PubMed ID: 24291246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning.
    Bayot M; Dujardin K; Tard C; Defebvre L; Bonnet CT; Allart E; Delval A
    Neurophysiol Clin; 2018 Dec; 48(6):361-375. PubMed ID: 30487064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Planar covariance of upper and lower limb elevation angles during hand-foot crawling in healthy young adults.
    MacLellan MJ; Catavitello G; Ivanenko YP; Lacquaniti F
    Exp Brain Res; 2017 Nov; 235(11):3287-3294. PubMed ID: 28801797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the control of arm movement during body motion as revealed by EMG analyses.
    Blouin J; Guillaud E; Bresciani JP; Guerraz M; Simoneau M
    Brain Res; 2010 Jan; 1309():40-52. PubMed ID: 19883633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Test-retest repeatability reveals a temporal kinematic signature for an upper limb precision grasping task in adults.
    Niechwiej-Szwedo E; Nouredanesh M; Tung J
    Hum Mov Sci; 2021 Feb; 75():102721. PubMed ID: 33271492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.