These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26081101)

  • 21. External Stress-Free Reversible Multiple Shape Memory Polymers.
    Huang YN; Fan LF; Rong MZ; Zhang MQ; Gao YM
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31346-31355. PubMed ID: 31381290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment.
    Govindarajan T; Shandas R
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 29707382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and characterization of triple shape memory composite foams.
    Nejad HB; Baker RM; Mather PT
    Soft Matter; 2014 Oct; 10(40):8066-74. PubMed ID: 25170743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles.
    Zhang H; Zhao Y
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13069-75. PubMed ID: 24308556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Optical Actuator Based on Gold-Nanoparticle-Containing Temperature-Memory Semicrystalline Polymers.
    Ge F; Lu X; Xiang J; Tong X; Zhao Y
    Angew Chem Int Ed Engl; 2017 May; 56(22):6126-6130. PubMed ID: 28370828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable polymer multi-shape memory effect.
    Xie T
    Nature; 2010 Mar; 464(7286):267-70. PubMed ID: 20220846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties.
    Zhang D; Petersen KM; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):186-91. PubMed ID: 23227875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence-Rearranged Cocrystalline Polymer Network with Shape Reconfigurability and Tunable Switching Temperature.
    Yuan W; Zhou J; Liu K; Li X; Xu W; Song H; Shan G; Bao Y; Zhao Q; Pan P
    ACS Macro Lett; 2020 Apr; 9(4):588-594. PubMed ID: 35648491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal/Near-Infrared Light Dual-Responsive Reversible Two-Way Shape Memory cEVA/2D-MoO
    Hao C; Wei C; Wang Y; Sun Z; Liu H; Dai R; Huang M; He S; Liu W; Zhu C
    Macromol Rapid Commun; 2021 Jun; 42(11):e2100056. PubMed ID: 33729614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust, Reprocessable, and Reconfigurable Cellulose-Based Multiple Shape Memory Polymer Enabled by Dynamic Metal-Ligand Bonds.
    Wang W; Wang F; Zhang C; Wang Z; Tang J; Zeng X; Wan X
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25233-25242. PubMed ID: 31578850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical Microfabrication of Shape-Memory Polymer Systems via Bicomponent Fiber Spinning.
    Tallury SS; Pourdeyhimi B; Pasquinelli MA; Spontak RJ
    Macromol Rapid Commun; 2016 Nov; 37(22):1837-1843. PubMed ID: 27711987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Medical applications of shape memory polymers.
    Sokolowski W; Metcalfe A; Hayashi S; Yahia L; Raymond J
    Biomed Mater; 2007 Mar; 2(1):S23-7. PubMed ID: 18458416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyolefin Thermoplastics for Multiple Shape and Reversible Shape Memory.
    Gao Y; Liu W; Zhu S
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4882-4889. PubMed ID: 28092158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shape memory of a polymer grating surface fabricated by two-beam interference lithography.
    Luo Y; Fang LN; Wei WH; Guan W; Dai YZ; Sun XC; Gao BR
    Appl Opt; 2022 Jan; 61(3):792-796. PubMed ID: 35200784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Encapsulation process for diffraction gratings.
    Ratzsch S; Kley EB; Tünnermann A; Szeghalmi A
    Opt Express; 2015 Jul; 23(14):17955-65. PubMed ID: 26191855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications.
    Guo B; Chen Y; Lei Y; Zhang L; Zhou WY; Rabie AB; Zhao J
    Biomacromolecules; 2011 Apr; 12(4):1312-21. PubMed ID: 21381645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry.
    Lu W; Le X; Zhang J; Huang Y; Chen T
    Chem Soc Rev; 2017 Mar; 46(5):1284-1294. PubMed ID: 28138679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unique aspects of a shape memory polymer as the substrate for surface wrinkling.
    Li J; An Y; Huang R; Jiang H; Xie T
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):598-603. PubMed ID: 22233880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shape memory particles capable of controlled geometric and chemical asymmetry made from aliphatic polyesters.
    Brosnan SM; Jackson AM; Wang Y; Ashby VS
    Macromol Rapid Commun; 2014 Oct; 35(19):1653-60. PubMed ID: 25060745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustainable Approach for the Synthesis of a Semicrystalline Polymer with a Reversible Shape-Memory Effect.
    Wong JW; Yang X; Zhao Q; Xue Y; Lok TJ; Wang L; Fan X; Xiao X; Wong TW; Li T; Chen L; Ismail AF
    ACS Macro Lett; 2023 May; 12(5):563-569. PubMed ID: 37052196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.