BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 26081161)

  • 21. Effect of starch-derived organic acids on the removal of polycyclic aromatic hydrocarbons in an aquaculture-sediment microbial fuel cell.
    Zhang H; Chao B; Gao X; Cao X; Li X
    J Environ Manage; 2022 Mar; 311():114783. PubMed ID: 35299133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review.
    Dhar K; Subashchandrabose SR; Venkateswarlu K; Krishnan K; Megharaj M
    Rev Environ Contam Toxicol; 2020; 251():25-108. PubMed ID: 31011832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity.
    Xia C; Xu M; Liu J; Guo J; Yang Y
    Bioresour Technol; 2015 Aug; 190():420-3. PubMed ID: 25936443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemometrical assessment of the electrical parameters obtained by long-term operating freshwater sediment microbial fuel cells.
    Mitov M; Bardarov I; Mandjukov P; Hubenova Y
    Bioelectrochemistry; 2015 Dec; 106(Pt A):105-14. PubMed ID: 26073675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of sediment-bound PAHs in field-contaminated sediment.
    Lei L; Khodadoust AP; Suidan MT; Tabak HH
    Water Res; 2005; 39(2-3):349-61. PubMed ID: 15644243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Progresses in anaerobic biodegradation of polycyclic aromatic hydrocarbons--a review].
    Sun M; Teng Y; Luo Y
    Wei Sheng Wu Xue Bao; 2012 Aug; 52(8):931-9. PubMed ID: 23173428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural dynamics of microbial communities in polycyclic aromatic hydrocarbon-contaminated tropical estuarine sediments undergoing simulated aerobic biotreatment.
    Obi CC; Adebusoye SA; Amund OO; Ugoji EO; Ilori MO; Hedman CJ; Hickey WJ
    Appl Microbiol Biotechnol; 2017 May; 101(10):4299-4314. PubMed ID: 28190100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Batteryless, wireless sensor powered by a sediment microbial fuel cell.
    Donovan C; Dewan A; Heo D; Beyenal H
    Environ Sci Technol; 2008 Nov; 42(22):8591-6. PubMed ID: 19068853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of sediment pretreatment on the performance of sediment microbial fuel cells.
    Song TS; Jiang HL
    Bioresour Technol; 2011 Nov; 102(22):10465-70. PubMed ID: 21967718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Successful treatment of low PAH-contaminated sewage sludge in aerobic bioreactors.
    Trably E; Patureau D
    Environ Sci Pollut Res Int; 2006 May; 13(3):170-6. PubMed ID: 16758707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3.
    Li CH; Wong YS; Wang HY; Tam NF
    J Environ Sci (China); 2015 Apr; 30():148-56. PubMed ID: 25872721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan.
    Yuan SY; Chang BV
    J Environ Sci Health B; 2007 Jan; 42(1):63-9. PubMed ID: 17162569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. No enhancement of cyanobacterial bloom biomass decomposition by sediment microbial fuel cell (SMFC) at different temperatures.
    Ye TR; Song N; Chen M; Yan ZS; Jiang HL
    Environ Pollut; 2016 Nov; 218():59-65. PubMed ID: 27552038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activated carbon stimulates microbial diversity and PAH biodegradation under anaerobic conditions in oil-polluted sediments.
    Bonaglia S; Broman E; Brindefalk B; Hedlund E; Hjorth T; Rolff C; Nascimento FJA; Udekwu K; Gunnarsson JS
    Chemosphere; 2020 Jun; 248():126023. PubMed ID: 32007777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial electrochemical system: an emerging technology for remediation of polycyclic aromatic hydrocarbons from soil and sediments.
    Kumari S; Rajput VD; Sushkova S; Minkina T
    Environ Geochem Health; 2023 Dec; 45(12):9451-9467. PubMed ID: 35962926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process.
    Khan MD; Abdulateif H; Ismail IM; Sabir S; Khan MZ
    PLoS One; 2015; 10(10):e0138448. PubMed ID: 26496083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methane emission reduction oriented extracellular electron transfer and bioremediation of sediment microbial fuel cell: A review.
    Xu C; Sun S; Li Y; Gao Y; Zhang W; Tian L; Li T; Du Q; Cai J; Zhou L
    Sci Total Environ; 2023 May; 874():162508. PubMed ID: 36863582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry.
    Li CH; Wong YS; Tam NF
    Bioresour Technol; 2010 Nov; 101(21):8083-92. PubMed ID: 20594830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electricity generation through a photo sediment microbial fuel cell using algae at the cathode.
    Neethu B; Ghangrekar MM
    Water Sci Technol; 2017 Dec; 76(11-12):3269-3277. PubMed ID: 29236006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment.
    Chen J; Wong MH; Wong YS; Tam NF
    Mar Pollut Bull; 2008; 57(6-12):695-702. PubMed ID: 18433800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.