BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26081304)

  • 1. Conversion of coal mine drainage ochre to water treatment reagent: Production, characterisation and application for P and Zn removal.
    Sapsford D; Santonastaso M; Thorn P; Kershaw S
    J Environ Manage; 2015 Sep; 160():7-15. PubMed ID: 26081304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of iron ochre from mine drainage treatment for removal of phosphorus from wastewater.
    Dobbie KE; Heal KV; Aumônier J; Smith KA; Johnston A; Younger PL
    Chemosphere; 2009 May; 75(6):795-800. PubMed ID: 19195678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review.
    Rakotonimaro TV; Neculita CM; Bussière B; Benzaazoua M; Zagury GJ
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):73-91. PubMed ID: 27757745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of contaminated greywater using pelletised mine water sludge.
    Abed SN; Almuktar SA; Scholz M
    J Environ Manage; 2017 Jul; 197():10-23. PubMed ID: 28314195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sizing criteria for a low footprint passive mine water treatment system.
    Sapsford DJ; Williams KP
    Water Res; 2009 Feb; 43(2):423-32. PubMed ID: 19022469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment.
    Heal KV; Dobbie KE; Bozika E; McHaffie H; Simpson AE; Smith KA
    Water Sci Technol; 2005; 51(9):275-82. PubMed ID: 16042268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of each compartment in a two-compartment vertical flow reactor for ferruginous mine water treatment.
    Yim GJ; Cheong YW; Hong JH; Hur W
    Water Res; 2014 Oct; 62():11-9. PubMed ID: 24929991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of ochre from an abandoned metal mine in the south east of Ireland for phosphorus sequestration from dairy dirty water.
    Fenton O; Healy MG; Rodgers M
    J Environ Qual; 2009; 38(3):1120-5. PubMed ID: 19398509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of phosphorus removal by cement-bound ochre pellets.
    Littler J; Geroni JN; Sapsford DJ; Coulton R; Griffiths AJ
    Chemosphere; 2013 Jan; 90(4):1533-8. PubMed ID: 23041038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus removal performance of acid mine drainage from wastewater.
    Ruihua L; Lin Z; Tao T; Bo L
    J Hazard Mater; 2011 Jun; 190(1-3):669-76. PubMed ID: 21514994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel passive co-treatment of acid mine drainage and municipal wastewater.
    Strosnider WH; Winfrey BK; Nairn RW
    J Environ Qual; 2011; 40(1):206-13. PubMed ID: 21488509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge.
    Sibrell PL; Montgomery GA; Ritenour KL; Tucker TW
    Water Res; 2009 May; 43(8):2240-50. PubMed ID: 19269663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory studies using naturally occurring "green rust" to aid metal mine water remediation.
    Bearcock JM; Perkins WT; Pearce NJ
    J Hazard Mater; 2011 Jun; 190(1-3):466-73. PubMed ID: 21497995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of dissolved Zn(II) using coal mine drainage sludge: implications for acidic wastewater treatment.
    Cui M; Jang M; Cannon FS; Na S; Khim J; Park JK
    J Environ Manage; 2013 Feb; 116():107-12. PubMed ID: 23295677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.
    Madzivire G; Maleka PP; Vadapalli VR; Gitari WM; Lindsay R; Petrik LF
    J Environ Manage; 2014 Jan; 133():12-7. PubMed ID: 24355687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of reused powdered wastes as adsorbent for treating arsenic containing mine drainage.
    Park YJ; Yang JK; Choi SI
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(9):1093-9. PubMed ID: 18569325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New perspectives on the passive treatment of ferruginous circumneutral mine waters in the UK.
    Sapsford DJ
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7827-36. PubMed ID: 23636592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A continuous pilot-scale system using coal-mine drainage sludge to treat acid mine drainage contaminated with high concentrations of Pb, Zn, and other heavy metals.
    Cui M; Jang M; Cho SH; Khim J; Cannon FS
    J Hazard Mater; 2012 May; 215-216():122-8. PubMed ID: 22421342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.
    Hallberg KB; Johnson DB
    Sci Total Environ; 2005 Feb; 338(1-2):115-24. PubMed ID: 15680632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive co-treatment of phosphorus-depleted municipal wastewater with acid mine drainage: Towards sustainable wastewater management systems.
    Masindi V; Shabalala A; Foteinis S
    J Environ Manage; 2022 Dec; 324():116399. PubMed ID: 36206654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.