BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26081350)

  • 1. Effects of solution conditions on virus retention by the Viresolve® NFP filter.
    Dishari SK; Micklin MR; Sung KJ; Zydney AL; Venkiteshwaran A; Earley JN
    Biotechnol Prog; 2015; 31(5):1280-6. PubMed ID: 26081350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing effects of pressure release on virus capture during virus filtration using confocal microscopy.
    Dishari SK; Venkiteshwaran A; Zydney AL
    Biotechnol Bioeng; 2015 Oct; 112(10):2115-22. PubMed ID: 25898823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal virus polarization model for virus retention by the Ultipor(®) VF Grade DV20 membrane.
    Jackson NB; Bakhshayeshi M; Zydney AL; Mehta A; van Reis R; Kuriyel R
    Biotechnol Prog; 2014; 30(4):856-63. PubMed ID: 24616397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of protein fouling on nanoparticle capture within the Viresolve® Pro and Viresolve® NFP virus removal membranes.
    Fallahianbijan F; Giglia S; Carbrello C; Bell D; Zydney AL
    Biotechnol Bioeng; 2019 Sep; 116(9):2285-2291. PubMed ID: 31081123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a pressure release on virus retention with the Ultipor DV20 membrane.
    Woods MA; Zydney AL
    Biotechnol Bioeng; 2014 Mar; 111(3):545-51. PubMed ID: 24018957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of antibody solution conditions on filter performance for virus removal filter Planova 20N.
    Hongo-Hirasaki T; Komuro M; Ide S
    Biotechnol Prog; 2010; 26(4):1080-7. PubMed ID: 20730765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of solution pH on protein transmission and membrane capacity during virus filtration.
    Bakhshayeshi M; Zydney AL
    Biotechnol Bioeng; 2008 May; 100(1):108-17. PubMed ID: 18080342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of proteins and protein fouling on virus retention during virus removal filtration.
    Afzal MA; Zydney AL
    Biotechnol Bioeng; 2024 Feb; 121(2):710-718. PubMed ID: 37994529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size exclusion removal of model mammalian viruses using a unique membrane system, Part I: Membrane qualification.
    DiLeo AJ; Vacante DA; Deane EF
    Biologicals; 1993 Sep; 21(3):275-86. PubMed ID: 8117441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter.
    Brady-Estévez AS; Nguyen TH; Gutierrez L; Elimelech M
    Water Res; 2010 Jul; 44(13):3773-80. PubMed ID: 20569966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size exclusion removal of model mammalian viruses using a unique membrane system, Part II: Module qualification and process simulation.
    DiLeo AJ; Vacante DA; Deane EF
    Biologicals; 1993 Sep; 21(3):287-96. PubMed ID: 8117442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a novel Viresolve NFR virus filter.
    Brough H; Antoniou C; Carter J; Jakubik J; Xu Y; Lutz H
    Biotechnol Prog; 2002; 18(4):782-95. PubMed ID: 12153313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiwalled carbon nanotube filter: improving viral removal at low pressure.
    Brady-Estévez AS; Schnoor MH; Vecitis CD; Saleh NB; Elimelech M
    Langmuir; 2010 Sep; 26(18):14975-82. PubMed ID: 20795662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of viruses from surface water and secondary effluents by sand filtration.
    Aronino R; Dlugy C; Arkhangelsky E; Shandalov S; Oron G; Brenner A; Gitis V
    Water Res; 2009 Jan; 43(1):87-96. PubMed ID: 19013631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ion binding on protein transport through ultrafiltration membranes.
    Menon MK; Zydney AL
    Biotechnol Bioeng; 1999 May; 63(3):298-307. PubMed ID: 10099609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic visualization of virus removal by dedicated filters used in biopharmaceutical processing: Impact of membrane structure and localization of captured virus particles.
    Adan-Kubo J; Tsujikawa M; Takahashi K; Hongo-Hirasaki T; Sakai K
    Biotechnol Prog; 2019 Nov; 35(6):e2875. PubMed ID: 31228338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A validatible porosimetric technique for verifying the integrity of virus-retentive membranes.
    Phillips MW; DiLeo AJ
    Biologicals; 1996 Sep; 24(3):243-53. PubMed ID: 8978924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of filtrate flux and process disruptions on virus retention by a relatively homogeneous virus removal membrane.
    Afzal MA; Zydney AL
    Biotechnol Prog; 2022 Jul; 38(4):e3255. PubMed ID: 35383397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.
    Boudaud N; Machinal C; David F; Fréval-Le Bourdonnec A; Jossent J; Bakanga F; Arnal C; Jaffrezic MP; Oberti S; Gantzer C
    Water Res; 2012 May; 46(8):2651-64. PubMed ID: 22421032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of membrane structure on the filtrate flux during monoclonal antibody filtration through virus retentive membranes.
    Billups M; Minervini M; Holstein M; Feroz H; Ranjan S; Hung J; Bao H; Li ZJ; Ghose S; Zydney AL
    Biotechnol Prog; 2022 Mar; 38(2):e3231. PubMed ID: 34994527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.